1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//! OpenPGP data types and associated machinery.
//!
//! This crate aims to provide a complete implementation of OpenPGP as
//! defined by [RFC 4880] as well as several extensions (e.g., [RFC
//! 6637], which describes ECC cryptography for OpenPGP, and [RFC
//! 4880bis], the draft of the next OpenPGP standard).  This includes
//! support for unbuffered message processing.
//!
//! A few features that the OpenPGP community considers to be
//! deprecated (e.g., version 3 compatibility) have been left out as
//! well as support for functionality that we consider to be not only
//! completely useless, but also dangerous (e.g., support for
//! [unhashed signature subpackets]).  We have also updated some
//! OpenPGP defaults to avoid foot guns (e.g., this crate does not
//! fallback to IDEA, but instead assumes all OpenPGP implementations
//! understand AES).  If some functionality is missing, please file a
//! bug report.
//!
//! A non-goal of this crate is support for any sort of high-level,
//! bolted-on functionality.  For instance, [RFC 4880] does not define
//! trust models, such as the web of trust, direct trust, or TOFU.
//! Neither does this crate.  [RFC 4880] does provide some mechanisms
//! for creating trust models (specifically, UserID certifications),
//! and this crate does expose those mechanisms.
//!
//! We also try hard to avoid dictating how OpenPGP should be used.
//! This doesn't mean that we don't have opinions about how OpenPGP
//! should be used in a number of common scenarios (for instance,
//! message validation).  But, in this crate, we refrain from
//! expressing those opinions; we expose an opinionated, high-level
//! interface in the [sequoia-core] and related crates.  In our
//! opinion, you should generally use those crates instead of this
//! one.
//!
//! [RFC 4880]: https://tools.ietf.org/html/rfc4880
//! [RFC 6637]: https://tools.ietf.org/html/rfc6637
//! [RFC 4880bis]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-05
//! [unhashed signature subpackets]: https://tools.ietf.org/html/rfc4880#section-5.2.3.2
//! [sequoia-core]: ../sequoia_core

#![warn(missing_docs)]

extern crate lalrpop_util;

#[macro_use]
extern crate failure;

extern crate buffered_reader;

extern crate memsec;
extern crate nettle;

#[cfg(feature = "compression-deflate")]
extern crate flate2;
#[cfg(feature = "compression-bzip2")]
extern crate bzip2;

#[cfg(test)]
#[macro_use]
extern crate quickcheck;

#[cfg(not(test))]
extern crate quickcheck;

extern crate rand;

extern crate time;

#[macro_use]
mod macros;

// Like assert!, but checks a pattern.
//
//   assert_match!(Some(_) = x);
//
// Note: For modules to see this macro, we need to define it before we
// declare the modules.
#[allow(unused_macros)]
macro_rules! assert_match {
    ( $error: pat = $expr:expr, $fmt:expr, $($pargs:expr),* ) => {
        let x = $expr;
        if let $error = x {
            /* Pass.  */
        } else {
            let extra = format!($fmt, $($pargs),*);
            panic!("Expected {}, got {:?}{}{}",
                   stringify!($error), x,
                   if $fmt.len() > 0 { ": " } else { "." }, extra);
        }
    };
    ( $error: pat = $expr: expr, $fmt:expr ) => {
        assert_match!($error = $expr, $fmt, );
    };
    ( $error: pat = $expr: expr ) => {
        assert_match!($error = $expr, "");
    };
}

pub mod armor;
pub mod autocrypt;
pub mod conversions;
pub mod crypto;

pub mod packet;
use packet::{BodyLength, Header, Container};
use packet::ctb::{CTB, CTBOld, CTBNew};
pub use packet::key::SecretKey;

pub mod parse;

pub mod tpk;
pub mod serialize;

mod reader;
pub use reader::Reader;

mod packet_pile;
pub mod message;

pub mod constants;
use constants::{
    PublicKeyAlgorithm,
    SymmetricAlgorithm,
    HashAlgorithm,
    SignatureType,
};

mod fingerprint;
mod keyid;

mod tsk;
pub use tsk::TSK;

#[cfg(test)]
use std::path::PathBuf;

#[cfg(test)]
fn path_to(artifact: &str) -> PathBuf {
    [env!("CARGO_MANIFEST_DIR"), "tests", "data", "messages", artifact]
        .iter().collect()
}

/// Crate result specialization.
pub type Result<T> = ::std::result::Result<T, failure::Error>;

#[derive(Fail, Debug, Clone)]
/// Errors returned by this module.
pub enum Error {
    /// Invalid argument.
    #[fail(display = "Invalid argument: {}", _0)]
    InvalidArgument(String),

    /// Invalid operation.
    #[fail(display = "Invalid operation: {}", _0)]
    InvalidOperation(String),

    /// A malformed packet.
    #[fail(display = "Malformed packet: {}", _0)]
    MalformedPacket(String),

    /// Unsupported hash algorithm identifier.
    #[fail(display = "Unsupported hash algorithm: {}", _0)]
    UnsupportedHashAlgorithm(HashAlgorithm),

    /// Unsupported public key algorithm identifier.
    #[fail(display = "Unsupported public key algorithm: {}", _0)]
    UnsupportedPublicKeyAlgorithm(PublicKeyAlgorithm),

    /// Unsupported elliptic curve ASN.1 OID.
    #[fail(display = "Unsupported elliptic curve: {}", _0)]
    UnsupportedEllipticCurve(constants::Curve),

    /// Unsupported symmetric key algorithm.
    #[fail(display = "Unsupported symmetric algorithm: {}", _0)]
    UnsupportedSymmetricAlgorithm(SymmetricAlgorithm),

    /// Unsupported AEAD algorithm.
    #[fail(display = "Unsupported AEAD algorithm: {}", _0)]
    UnsupportedAEADAlgorithm(constants::AEADAlgorithm),

    /// Unsupported signature type.
    #[fail(display = "Unsupported signature type: {}", _0)]
    UnsupportedSignatureType(SignatureType),

    /// Invalid password.
    #[fail(display = "Invalid password")]
    InvalidPassword,

    /// Invalid session key.
    #[fail(display = "Invalid session key: {}", _0)]
    InvalidSessionKey(String),

    /// Missing session key.
    #[fail(display = "Missing session key: {}", _0)]
    MissingSessionKey(String),

    /// Malformed MPI.
    #[fail(display = "Malformed MPI: {}", _0)]
    MalformedMPI(String),

    /// Bad signature.
    #[fail(display = "Bad signature: {}", _0)]
    BadSignature(String),

    /// Message has been manipulated.
    #[fail(display = "Message has been manipulated")]
    ManipulatedMessage,

    /// Malformed message.
    #[fail(display = "Malformed Message: {}", _0)]
    MalformedMessage(String),

    /// Malformed tranferable public key.
    #[fail(display = "Malformed TPK: {}", _0)]
    MalformedTPK(String),

    /// Unsupported TPK.
    ///
    /// This usually occurs, because the primary key is in an
    /// unsupported format.  In particular, Sequoia does not support
    /// version 3 keys.
    #[fail(display = "Unsupported TPK: {}", _0)]
    UnsupportedTPK(String),

    /// Index out of range.
    #[fail(display = "Index out of range")]
    IndexOutOfRange,
}

/// The OpenPGP packets that Sequoia understands.
///
/// The different OpenPGP packets are detailed in [Section 5 of RFC 4880].
///
/// The `Unknown` packet allows Sequoia to deal with packets that it
/// doesn't understand.  The `Unknown` packet is basically a binary
/// blob that includes the packet's tag.
///
/// The unknown packet is also used for packets that are understood,
/// but use unsupported options.  For instance, when the packet parser
/// encounters a compressed data packet with an unknown compression
/// algorithm, it returns the packet in an `Unknown` packet rather
/// than a `CompressedData` packet.
///
///   [Section 5 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5
#[derive(Debug)]
#[derive(PartialEq, Eq, Hash, Clone)]
pub enum Packet {
    /// Unknown packet.
    Unknown(packet::Unknown),
    /// Signature packet.
    Signature(packet::Signature),
    /// One pass signature packet.
    OnePassSig(packet::OnePassSig),
    /// Public key packet.
    PublicKey(packet::Key),
    /// Public subkey packet.
    PublicSubkey(packet::Key),
    /// Public/Secret key pair.
    SecretKey(packet::Key),
    /// Public/Secret subkey pair.
    SecretSubkey(packet::Key),
    /// User ID packet.
    UserID(packet::UserID),
    /// User attribute packet.
    UserAttribute(packet::UserAttribute),
    /// Literal data packet.
    Literal(packet::Literal),
    /// Compressed literal data packet.
    CompressedData(packet::CompressedData),
    /// Public key encrypted data packet.
    PKESK(packet::PKESK),
    /// Symmetric key encrypted data packet.
    SKESK(packet::SKESK),
    /// Symmetric key encrypted, integrity protected data packet.
    SEIP(packet::SEIP),
    /// Modification detection code packet.
    MDC(packet::MDC),
    /// AEAD Encrypted Data Packet.
    AED(packet::AED),
}

impl Packet {
    /// Returns the `Packet's` corresponding OpenPGP tag.
    ///
    /// Tags are explained in [Section 4.3 of RFC 4880].
    ///
    ///   [Section 4.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-4.3
    pub fn tag(&self) -> packet::Tag {
        use packet::Tag;
        match self {
            &Packet::Unknown(ref packet) => packet.tag,
            &Packet::Signature(_) => Tag::Signature,
            &Packet::OnePassSig(_) => Tag::OnePassSig,
            &Packet::PublicKey(_) => Tag::PublicKey,
            &Packet::PublicSubkey(_) => Tag::PublicSubkey,
            &Packet::SecretKey(_) => Tag::SecretKey,
            &Packet::SecretSubkey(_) => Tag::SecretSubkey,
            &Packet::UserID(_) => Tag::UserID,
            &Packet::UserAttribute(_) => Tag::UserAttribute,
            &Packet::Literal(_) => Tag::Literal,
            &Packet::CompressedData(_) => Tag::CompressedData,
            &Packet::PKESK(_) => Tag::PKESK,
            &Packet::SKESK(_) => Tag::SKESK,
            &Packet::SEIP(_) => Tag::SEIP,
            &Packet::MDC(_) => Tag::MDC,
            &Packet::AED(_) => Tag::AED,
        }
    }

    /// Returns the parsed `Packet's` corresponding OpenPGP tag.
    ///
    /// Returns the packets tag, but only if it was successfully
    /// parsed into the corresponding packet type.  If e.g. a
    /// Signature Packet uses some unsupported methods, it is parsed
    /// into an `Packet::Unknown`.  `tag()` returns `Tag::Signature`,
    /// whereas `kind()` returns `None`.
    pub fn kind(&self) -> Option<packet::Tag> {
        use packet::Tag;
        match self {
            &Packet::Unknown(_) => None,
            &Packet::Signature(_) => Some(Tag::Signature),
            &Packet::OnePassSig(_) => Some(Tag::OnePassSig),
            &Packet::PublicKey(_) => Some(Tag::PublicKey),
            &Packet::PublicSubkey(_) => Some(Tag::PublicSubkey),
            &Packet::SecretKey(_) => Some(Tag::SecretKey),
            &Packet::SecretSubkey(_) => Some(Tag::SecretSubkey),
            &Packet::UserID(_) => Some(Tag::UserID),
            &Packet::UserAttribute(_) => Some(Tag::UserAttribute),
            &Packet::Literal(_) => Some(Tag::Literal),
            &Packet::CompressedData(_) => Some(Tag::CompressedData),
            &Packet::PKESK(_) => Some(Tag::PKESK),
            &Packet::SKESK(_) => Some(Tag::SKESK),
            &Packet::SEIP(_) => Some(Tag::SEIP),
            &Packet::MDC(_) => Some(Tag::MDC),
            &Packet::AED(_) => Some(Tag::AED),
        }
    }
}

/// A `PacketPile` holds a deserialized sequence of OpenPGP messages.
///
/// To deserialize an OpenPGP usage, use either [`PacketParser`],
/// [`PacketPileParser`], or [`PacketPile::from_file`] (or related
/// routines).
///
/// Normally, you'll want to convert the `PacketPile` to a TPK or a
/// `Message`.
///
///   [`PacketParser`]: parse/struct.PacketParser.html
///   [`PacketPileParser`]: parse/struct.PacketPileParser.html
///   [`PacketPile::from_file`]: struct.PacketPile.html#method.from_file
#[derive(PartialEq, Clone)]
pub struct PacketPile {
    /// At the top level, we have a sequence of packets, which may be
    /// containers.
    top_level: Container,
}

/// A transferable public key (TPK).
///
/// A TPK (see [RFC 4880, section 11.1]) can be used to verify
/// signatures and encrypt data.  It can be stored in a keystore and
/// uploaded to keyservers.
///
/// TPKs are always canonicalized in the sense that only elements
/// (user id, user attribute, subkey) with at least one valid
/// self-signature are preserved.  Also, invalid self-signatures are
/// dropped.  The self-signatures are sorted so that the newest
/// self-signature comes first.  User IDs are sorted so that the first
/// `UserID` is the primary User ID.  Third-party certifications are
/// *not* validated, as the keys are not available; they are simply
/// passed through as is.
///
/// [RFC 4880, section 11.1]: https://tools.ietf.org/html/rfc4880#section-11.1
///
/// # Example
///
/// ```rust
/// # extern crate sequoia_openpgp as openpgp;
/// # use openpgp::Result;
/// # use openpgp::parse::{PacketParserResult, PacketParser};
/// use openpgp::TPK;
///
/// # fn main() { f().unwrap(); }
/// # fn f() -> Result<()> {
/// #     let ppr = PacketParser::from_bytes(&b""[..])?;
/// match TPK::from_packet_parser(ppr) {
///     Ok(tpk) => {
///         println!("Key: {}", tpk.primary());
///         for binding in tpk.userids() {
///             println!("User ID: {}", binding.userid());
///         }
///     }
///     Err(err) => {
///         eprintln!("Error parsing TPK: {}", err);
///     }
/// }
///
/// #     Ok(())
/// # }
#[derive(Debug, Clone, PartialEq)]
pub struct TPK {
    primary: packet::Key,
    primary_selfsigs: Vec<packet::Signature>,
    primary_certifications: Vec<packet::Signature>,
    primary_self_revocations: Vec<packet::Signature>,
    // Other revocations (these may or may not be by known designated
    // revokers).
    primary_other_revocations: Vec<packet::Signature>,

    userids: Vec<tpk::UserIDBinding>,
    user_attributes: Vec<tpk::UserAttributeBinding>,
    subkeys: Vec<tpk::SubkeyBinding>,

    // Unknown components, e.g., some UserAttribute++ packet from the
    // future.
    unknowns: Vec<tpk::UnknownBinding>,
    // Signatures that we couldn't find a place for.
    bad: Vec<packet::Signature>,
}

/// An OpenPGP message.
///
/// An OpenPGP message is a structured sequence of OpenPGP packets.
/// Basically, it's an optionally encrypted, optionally signed literal
/// data packet.  The exact structure is defined in [Section 11.3 of RFC
/// 4880].
///
///   [Section 11.3 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-11.3
pub struct Message {
    /// A message is just a validated packet pile.
    pile: PacketPile,
}

/// Holds a fingerprint.
///
/// A fingerprint uniquely identifies a public key.  For more details
/// about how a fingerprint is generated, see [Section 12.2 of RFC
/// 4880].
///
///   [Section 12.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-12.2
#[derive(PartialEq, Eq, Clone, Hash)]
pub enum Fingerprint {
    /// 20 byte SHA-1 hash.
    V4([u8;20]),
    /// Used for holding fingerprints that we don't understand.  For
    /// instance, we don't grok v3 fingerprints.  And, it is possible
    /// that the Issuer subpacket contains the wrong number of bytes.
    Invalid(Box<[u8]>)
}

/// Holds a KeyID.
///
/// A KeyID is a fingerprint fragment.  It identifies a public key,
/// but is easy to forge.  For more details about how a KeyID is
/// generated, see [Section 12.2 of RFC 4880].
///
///   [Section 12.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-12.2
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Hash)]
pub enum KeyID {
    /// Lower 8 byte SHA-1 hash.
    V4([u8;8]),
    /// Used for holding fingerprints that we don't understand.  For
    /// instance, we don't grok v3 fingerprints.  And, it is possible
    /// that the Issuer subpacket contains the wrong number of bytes.
    Invalid(Box<[u8]>)
}

/// The revocation status.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum RevocationStatus<'a> {
    /// The key is definitely revoked.
    ///
    /// All self-revocations are returned, the most recent revocation
    /// first.
    Revoked(&'a [packet::Signature]),
    /// We have a third-party revocation certificate that is allegedly
    /// from a designated revoker, but we don't have the designated
    /// revoker's key to check its validity.
    ///
    /// All such certificates are returned.  The caller must check
    /// them manually.
    CouldBe(&'a [packet::Signature]),
    /// The key does not appear to be revoked, but perhaps an attacker
    /// has performed a DoS, which prevents us from seeing the
    /// revocation certificate.
    NotAsFarAsWeKnow,
}