1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
//! Functionality to hash packets, and generate hashes.

use HashAlgorithm;
use packet::UserID;
use packet::UserAttribute;
use packet::Key;
use packet::{signature, Signature};
use Error;
use Result;
use conversions::Time;

use nettle;
use nettle::Hash as NettleHash;

use std::fs::{File, OpenOptions};
use std::io::Write;

// If set to e.g. Some("/tmp/hash"), we will dump everything that is
// hashed to files /tmp/hash-N, where N is a number.
const DUMP_HASHED_VALUES: Option<&str> = None;

impl HashAlgorithm {
    /// Whether Sequoia supports this algorithm.
    pub fn is_supported(self) -> bool {
        match self {
            HashAlgorithm::SHA1 => true,
            HashAlgorithm::SHA224 => true,
            HashAlgorithm::SHA256 => true,
            HashAlgorithm::SHA384 => true,
            HashAlgorithm::SHA512 => true,
            HashAlgorithm::RipeMD => false,
            HashAlgorithm::MD5 => false,
            HashAlgorithm::Private(_) => false,
            HashAlgorithm::Unknown(_) => false,
        }
    }

    /// Creates a new Nettle hash context for this algorith. Fails if Sequoia
    /// does not support this algorithm. See `is_supported`.
    pub fn context(self) -> Result<Box<nettle::Hash>> {
        use nettle::hash::*;
        use nettle::hash::insecure_do_not_use::Sha1;

        let c: Result<Box<nettle::Hash>> = match self {
            HashAlgorithm::SHA1 => Ok(Box::new(Sha1::default())),
            HashAlgorithm::SHA224 => Ok(Box::new(Sha224::default())),
            HashAlgorithm::SHA256 => Ok(Box::new(Sha256::default())),
            HashAlgorithm::SHA384 => Ok(Box::new(Sha384::default())),
            HashAlgorithm::SHA512 => Ok(Box::new(Sha512::default())),
            HashAlgorithm::MD5 | HashAlgorithm::RipeMD =>
                Err(Error::UnsupportedHashAlgorithm(self).into()),
            HashAlgorithm::Private(_) | HashAlgorithm::Unknown(_) =>
                Err(Error::UnsupportedHashAlgorithm(self).into()),
        };

        if let Some(prefix) = DUMP_HASHED_VALUES {
            c.map(|c: Box<nettle::Hash>| -> Box<nettle::Hash> {
                Box::new(HashDumper::new(c, prefix))
            })
        } else {
            c
        }
    }

    /// Returns the ASN.1 OID of this hash algorithm.
    pub fn oid(self) -> Result<&'static [u8]> {
        use nettle::rsa;

        match self {
            HashAlgorithm::SHA1 => Ok(rsa::ASN1_OID_SHA1),
            HashAlgorithm::SHA224 => Ok(rsa::ASN1_OID_SHA224),
            HashAlgorithm::SHA256 => Ok(rsa::ASN1_OID_SHA256),
            HashAlgorithm::SHA384 => Ok(rsa::ASN1_OID_SHA384),
            HashAlgorithm::SHA512 => Ok(rsa::ASN1_OID_SHA512),
            HashAlgorithm::MD5 | HashAlgorithm::RipeMD =>
                Err(Error::UnsupportedHashAlgorithm(self.into()).into()),
            HashAlgorithm::Private(_) | HashAlgorithm::Unknown(_) =>
                Err(Error::UnsupportedHashAlgorithm(self).into()),
        }
    }
}

struct HashDumper {
    h: Box<nettle::Hash>,
    sink: File,
    filename: String,
    written: usize,
}

impl HashDumper {
    fn new(h: Box<nettle::Hash>, prefix: &str) -> Self {
        let mut n = 0;
        let mut filename;
        let sink = loop {
            filename = format!("{}-{}", prefix, n);
            match OpenOptions::new().write(true).create_new(true)
                .open(&filename)
            {
                Ok(f) => break f,
                Err(_) => n += 1,
            }
        };
        eprintln!("HashDumper: Writing to {}...", &filename);
        HashDumper {
            h: h,
            sink: sink,
            filename: filename,
            written: 0,
        }
    }
}

impl Drop for HashDumper {
    fn drop(&mut self) {
        eprintln!("HashDumper: Wrote {} bytes to {}...", self.written,
                  self.filename);
    }
}

impl nettle::Hash for HashDumper {
    fn digest_size(&self) -> usize {
        self.h.digest_size()
    }
    fn update(&mut self, data: &[u8]) {
        self.h.update(data);
        self.sink.write_all(data).unwrap();
        self.written += data.len();
    }
    fn digest(&mut self, digest: &mut [u8]) {
        self.h.digest(digest);
    }
    fn box_clone(&self) -> Box<nettle::Hash> {
        Box::new(Self::new(self.h.box_clone(), &DUMP_HASHED_VALUES.unwrap()))
    }
}

/// Hashes OpenPGP packets and related types.
pub trait Hash {
    /// Updates the given hash with this object.
    fn hash<H: nettle::Hash + Write>(&self, hash: &mut H);
}

impl Hash for UserID {
    /// Update the Hash with a hash of the user id.
    fn hash<H: nettle::Hash + Write>(&self, hash: &mut H) {
        let mut header = [0; 5];

        header[0] = 0xB4;
        let len = self.userid().len() as u32;
        header[1] = (len >> 24) as u8;
        header[2] = (len >> 16) as u8;
        header[3] = (len >> 8) as u8;
        header[4] = (len) as u8;

        hash.update(&header[..]);
        hash.update(self.userid());
    }
}

impl Hash for UserAttribute {
    /// Update the Hash with a hash of the user attribute.
    fn hash<H: nettle::Hash + Write>(&self, hash: &mut H) {
        let mut header = [0; 5];

        header[0] = 0xD1;
        let len = self.user_attribute().len() as u32;
        header[1] = (len >> 24) as u8;
        header[2] = (len >> 16) as u8;
        header[3] = (len >> 8) as u8;
        header[4] = (len) as u8;

        hash.update(&header[..]);
        hash.update(self.user_attribute());
    }
}

impl Hash for Key {
    /// Update the Hash with a hash of the key.
    fn hash<H: nettle::Hash + Write>(&self, hash: &mut H) {
        // We hash 8 bytes plus the MPIs.  But, the len doesn't
        // include the tag (1 byte) or the length (2 bytes).
        let len = (9 - 3) + self.mpis().serialized_len();

        let mut header : Vec<u8> = Vec::with_capacity(9);

        // Tag.  Note: we use this whether
        header.push(0x99);

        // Length (big endian).
        header.push(((len >> 8) & 0xFF) as u8);
        header.push((len & 0xFF) as u8);

        // Version.
        header.push(4);

        // Creation time.
        let creation_time = self.creation_time().to_pgp()
            .unwrap_or(0);
        header.push((creation_time >> 24) as u8);
        header.push((creation_time >> 16) as u8);
        header.push((creation_time >> 8) as u8);
        header.push((creation_time >> 0) as u8);

        // Algorithm.
        header.push(self.pk_algo().into());

        hash.update(&header[..]);

        // MPIs.
        self.mpis().hash(hash);
    }
}

impl Hash for Signature {
    /// Adds the `Signature` to the provided hash context.
    fn hash<H: nettle::Hash + Write>(&self, hash: &mut H) {
        self.fields.hash(hash);
    }
}

impl Hash for signature::Builder {
    /// Adds the `Signature` to the provided hash context.
    fn hash<H: nettle::Hash + Write>(&self, hash: &mut H) {
        // A version 4 signature packet is laid out as follows:
        //
        //   version - 1 byte                    \
        //   sigtype - 1 byte                     \
        //   pk_algo - 1 byte                      \
        //   hash_algo - 1 byte                      Included in the hash
        //   hashed_area_len - 2 bytes (big endian)/
        //   hashed_area                         _/
        //   ...                                 <- Not included in the hash

        let mut header = [0u8; 6];

        // Version.
        header[0] = 4;
        header[1] = self.sigtype().into();
        header[2] = self.pk_algo().into();
        header[3] = self.hash_algo().into();

        // The length of the hashed area, as a 16-bit endian number.
        let len = self.hashed_area().data.len();
        header[4] = (len >> 8) as u8;
        header[5] = len as u8;

        hash.update(&header[..]);

        hash.update(&self.hashed_area().data[..]);

        // A version 4 signature trailer is:
        //
        //   version - 1 byte
        //   0xFF (constant) - 1 byte
        //   amount - 4 bytes (big endian)
        //
        // The amount field is the amount of hashed from this
        // packet (this excludes the message content, and this
        // trailer).
        //
        // See https://tools.ietf.org/html/rfc4880#section-5.2.4
        let mut trailer = [0u8; 6];

        trailer[0] = 0x4;
        trailer[1] = 0xff;
        // The signature packet's length, not including the previous
        // two bytes and the length.
        let len = header.len() + self.hashed_area().data.len();
        trailer[2] = (len >> 24) as u8;
        trailer[3] = (len >> 16) as u8;
        trailer[4] = (len >> 8) as u8;
        trailer[5] = len as u8;

        hash.update(&trailer[..]);
    }
}

/// Hashing-related functionality.
impl Signature {
    /// Returns the message digest of the primary key binding over the
    /// specified primary key.
    pub fn primary_key_binding_hash<'a, S>(sig: S, key: &Key)
        -> Result<Vec<u8>>
        where S: Into<&'a signature::Builder> {

        let sig = sig.into();
        let mut h: Box<nettle::Hash> = sig.hash_algo().context()?;

        key.hash(&mut h);
        sig.hash(&mut h);

        let mut digest = vec![0u8; h.digest_size()];
        h.digest(&mut digest);
        Ok(digest)
    }

    /// Returns the message digest of the subkey binding over the
    /// specified primary key and subkey.
    pub fn subkey_binding_hash<'a, S>(sig: S, key: &Key, subkey: &Key)
        -> Result<Vec<u8>>
        where S: Into<&'a signature::Builder> {

        let sig = sig.into();
        let mut h: Box<nettle::Hash> = sig.hash_algo().context()?;

        key.hash(&mut h);
        subkey.hash(&mut h);
        sig.hash(&mut h);

        let mut digest = vec![0u8; h.digest_size()];
        h.digest(&mut digest);
        Ok(digest)
    }

    /// Returns the message digest of the user ID binding over the
    /// specified primary key, user ID, and signature.
    pub fn userid_binding_hash<'a, S>(sig: S, key: &Key, userid: &UserID)
        -> Result<Vec<u8>>
        where S: Into<&'a signature::Builder> {

        let sig = sig.into();
        let mut h: Box<nettle::Hash> = sig.hash_algo().context()?;

        key.hash(&mut h);
        userid.hash(&mut h);
        sig.hash(&mut h);

        let mut digest = vec![0u8; h.digest_size()];
        h.digest(&mut digest);
        Ok(digest)
    }

    /// Returns the message digest of the user attribute binding over
    /// the specified primary key, user attribute, and signature.
    pub fn user_attribute_binding_hash<'a, S>(sig: S, key: &Key,
                                              ua: &UserAttribute)
        -> Result<Vec<u8>>
        where S: Into<&'a signature::Builder> {

        let sig = sig.into();
        let mut h: Box<nettle::Hash> = sig.hash_algo().context()?;

        key.hash(&mut h);
        ua.hash(&mut h);
        sig.hash(&mut h);

        let mut digest = vec![0u8; h.digest_size()];
        h.digest(&mut digest);
        Ok(digest)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use TPK;
    use parse::Parse;

    macro_rules! bytes {
        ( $x:expr ) => { include_bytes!(concat!("../../tests/data/keys/", $x)) };
    }

    #[test]
    fn hash_verification() {
        fn check(tpk: TPK) -> (usize, usize, usize) {
            let mut userid_sigs = 0;
            for (i, binding) in tpk.userids().enumerate() {
                for selfsig in binding.selfsigs() {
                    let h = Signature::userid_binding_hash(
                        selfsig,
                        tpk.primary(),
                        binding.userid()).unwrap();
                    if &h[..2] != selfsig.hash_prefix() {
                        eprintln!("{:?}: {:?} / {:?}",
                                  i, binding.userid(), selfsig);
                        eprintln!("  Hash: {:?}", h);
                    }
                    assert_eq!(&h[..2], selfsig.hash_prefix());
                    userid_sigs += 1;
                }
            }
            let mut ua_sigs = 0;
            for (i, binding) in tpk.user_attributes().enumerate() {
                for selfsig in binding.selfsigs() {
                    let h = Signature::user_attribute_binding_hash(
                        selfsig,
                        tpk.primary(),
                        binding.user_attribute()).unwrap();
                    if &h[..2] != selfsig.hash_prefix() {
                        eprintln!("{:?}: {:?} / {:?}",
                                  i, binding.user_attribute(), selfsig);
                        eprintln!("  Hash: {:?}", h);
                    }
                    assert_eq!(&h[..2], selfsig.hash_prefix());
                    ua_sigs += 1;
                }
            }
            let mut subkey_sigs = 0;
            for (i, binding) in tpk.subkeys().enumerate() {
                for selfsig in binding.selfsigs() {
                    let h = Signature::subkey_binding_hash(
                        selfsig,
                        tpk.primary(),
                        binding.subkey()).unwrap();
                    if &h[..2] != selfsig.hash_prefix() {
                        eprintln!("{:?}: {:?}", i, binding);
                        eprintln!("  Hash: {:?}", h);
                    }
                    assert_eq!(h[0], selfsig.hash_prefix()[0]);
                    assert_eq!(h[1], selfsig.hash_prefix()[1]);
                    subkey_sigs += 1;
                }
            }

            (userid_sigs, ua_sigs, subkey_sigs)
        }

        check(TPK::from_bytes(bytes!("hash-algos/SHA224.gpg")).unwrap());
        check(TPK::from_bytes(bytes!("hash-algos/SHA256.gpg")).unwrap());
        check(TPK::from_bytes(bytes!("hash-algos/SHA384.gpg")).unwrap());
        check(TPK::from_bytes(bytes!("hash-algos/SHA512.gpg")).unwrap());
        check(TPK::from_bytes(bytes!("bannon-all-uids-subkeys.gpg")).unwrap());
        let (_userid_sigs, ua_sigs, _subkey_sigs)
            = check(TPK::from_bytes(bytes!("dkg.gpg")).unwrap());
        assert!(ua_sigs > 0);
    }
}