1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
use std::fmt;
use std::cmp;
use std::ops::{BitAnd, BitOr};

/// Describes how a key may be used, and stores additional
/// information.
#[derive(Clone)]
pub struct KeyFlags{
    can_certify: bool,
    can_sign: bool,
    can_encrypt_for_transport: bool,
    can_encrypt_at_rest: bool,
    can_authenticate: bool,
    is_split_key: bool,
    is_group_key: bool,
    unknown: Box<[u8]>,
}

impl Default for KeyFlags {
    fn default() -> Self {
        KeyFlags::new(&vec![0])
    }
}

impl fmt::Debug for KeyFlags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.can_certify() {
            f.write_str("C")?;
        }
        if self.can_sign() {
            f.write_str("S")?;
        }
        if self.can_encrypt_for_transport() {
            f.write_str("Et")?;
        }
        if self.can_encrypt_at_rest() {
            f.write_str("Er")?;
        }
        if self.can_authenticate() {
            f.write_str("A")?;
        }
        if self.is_split_key() {
            f.write_str("S")?;
        }
        if self.is_group_key() {
            f.write_str("G")?;
        }

        Ok(())
    }
}

impl PartialEq for KeyFlags {
    fn eq(&self, other: &Self) -> bool {
        self.partial_cmp(other) == Some(cmp::Ordering::Equal)
    }
}

impl Eq for KeyFlags {}

impl PartialOrd for KeyFlags {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        let mut a_bits = self.as_vec();
        let mut b_bits = other.as_vec();
        let len = cmp::max(a_bits.len(), b_bits.len());

        while a_bits.len() < len { a_bits.push(0); }
        while b_bits.len() < len { b_bits.push(0); }

        if a_bits == b_bits {
            Some(cmp::Ordering::Equal)
        } else if a_bits.iter().zip(b_bits.iter()).all(|(a,b)| a & b == *a) {
            Some(cmp::Ordering::Less)
        } else if a_bits.iter().zip(b_bits.iter()).all(|(a,b)| a & b == *b) {
            Some(cmp::Ordering::Greater)
        } else {
            None
        }
    }
}

impl BitAnd for &KeyFlags {
    type Output = KeyFlags;

    fn bitand(self, rhs: Self) -> KeyFlags {
        let l = self.as_vec();
        let r = rhs.as_vec();

        let mut c = Vec::with_capacity(cmp::min(l.len(), r.len()));
        for (l, r) in l.into_iter().zip(r.into_iter()) {
            c.push(l & r);
        }

        KeyFlags::new(&c[..])
    }
}

impl BitOr for &KeyFlags {
    type Output = KeyFlags;

    fn bitor(self, rhs: Self) -> KeyFlags {
        let l = self.as_vec();
        let r = rhs.as_vec();

        // Make l the longer one.
        let (mut l, r) = if l.len() > r.len() {
            (l, r)
        } else {
            (r, l)
        };

        for (i, r) in r.into_iter().enumerate() {
            l[i] = l[i] | r;
        }

        KeyFlags::new(&l[..])
    }
}

impl KeyFlags {
    /// Creates a new instance from `bits`.
    pub fn new(bits: &[u8]) -> Self {
        let can_certify = bits.get(0)
            .map(|x| x & KEY_FLAG_CERTIFY != 0).unwrap_or(false);
        let can_sign = bits.get(0)
            .map(|x| x & KEY_FLAG_SIGN != 0).unwrap_or(false);
        let can_encrypt_for_transport = bits.get(0)
            .map(|x| x & KEY_FLAG_ENCRYPT_FOR_TRANSPORT != 0).unwrap_or(false);
        let can_encrypt_at_rest = bits.get(0)
            .map(|x| x & KEY_FLAG_ENCRYPT_AT_REST != 0).unwrap_or(false);
        let can_authenticate = bits.get(0)
            .map(|x| x & KEY_FLAG_AUTHENTICATE != 0).unwrap_or(false);
        let is_split_key = bits.get(0)
            .map(|x| x & KEY_FLAG_SPLIT_KEY != 0).unwrap_or(false);
        let is_group_key = bits.get(0)
            .map(|x| x & KEY_FLAG_GROUP_KEY != 0).unwrap_or(false);
        let unk = if bits.is_empty() {
            Box::default()
        } else {
            let mut cpy = Vec::from(bits);

            cpy[0] &= (
                KEY_FLAG_ENCRYPT_AT_REST | KEY_FLAG_ENCRYPT_FOR_TRANSPORT |
                KEY_FLAG_SIGN | KEY_FLAG_CERTIFY | KEY_FLAG_AUTHENTICATE |
                KEY_FLAG_GROUP_KEY | KEY_FLAG_SPLIT_KEY
            ) ^ 0xff;

            while cpy.last().cloned() == Some(0) { cpy.pop(); }
            cpy.into_boxed_slice()
        };

        KeyFlags{
            can_certify, can_sign, can_encrypt_for_transport,
            can_encrypt_at_rest, can_authenticate, is_split_key,
            is_group_key, unknown: unk
        }
    }

    /// Returns a new `KeyFlags` with all capabilities disabled.
    pub fn empty() -> Self {
        KeyFlags::default()
    }

    /// Returns a slice referencing the raw values.
    pub(crate) fn as_vec(&self) -> Vec<u8> {
        let mut ret = if self.unknown.is_empty() {
            vec![0]
        } else {
            self.unknown.clone().into()
        };

        if self.can_certify { ret[0] |= KEY_FLAG_CERTIFY; }
        if self.can_sign { ret[0] |= KEY_FLAG_SIGN; }
        if self.can_encrypt_for_transport { ret[0] |= KEY_FLAG_ENCRYPT_FOR_TRANSPORT; }
        if self.can_encrypt_at_rest { ret[0] |= KEY_FLAG_ENCRYPT_AT_REST; }
        if self.can_authenticate { ret[0] |= KEY_FLAG_AUTHENTICATE; }
        if self.is_split_key { ret[0] |= KEY_FLAG_SPLIT_KEY; }
        if self.is_group_key { ret[0] |= KEY_FLAG_GROUP_KEY }

        ret
    }

    /// This key may be used to certify other keys.
    pub fn can_certify(&self) -> bool { self.can_certify }

    /// Sets whether or not this key may be used to certify other keys.
    pub fn set_certify(mut self, v: bool) -> Self {
        self.can_certify = v;
        self
    }

    /// This key may be used to sign data.
    pub fn can_sign(&self) -> bool { self.can_sign }

    /// Sets whether or not this key may be used to sign data.
    pub fn set_sign(mut self, v: bool) -> Self {
        self.can_sign = v;
        self
    }

    /// This key may be used to encrypt communications.
    pub fn can_encrypt_for_transport(&self) -> bool {
        self.can_encrypt_for_transport
    }

    /// Sets whether or not this key may be used to encrypt communications.
    pub fn set_encrypt_for_transport(mut self, v: bool) -> Self {
        self.can_encrypt_for_transport = v;
        self
    }

    /// This key may be used to encrypt storage.
    pub fn can_encrypt_at_rest(&self) -> bool { self.can_encrypt_at_rest }

    /// Sets whether or not this key may be used to encrypt storage.
    pub fn set_encrypt_at_rest(mut self, v: bool) -> Self {
        self.can_encrypt_at_rest = v;
        self
    }

    /// This key may be used for authentication.
    pub fn can_authenticate(&self) -> bool {
        self.can_authenticate
    }

    /// Sets whether or not this key may be used for authentication.
    pub fn set_authenticate(mut self, v: bool) -> Self {
        self.can_authenticate = v;
        self
    }

    /// The private component of this key may have been split
    /// using a secret-sharing mechanism.
    pub fn is_split_key(&self) -> bool {
        self.is_split_key
    }

    /// Sets whether or not the private component of this key may have been split
    /// using a secret-sharing mechanism.
    pub fn set_split_key(mut self, v: bool) -> Self {
        self.is_split_key = v;
        self
    }

    /// The private component of this key may be in
    /// possession of more than one person.
    pub fn is_group_key(&self) -> bool {
        self.is_group_key
    }

    /// Sets whether or not the private component of this key may be in
    /// possession of more than one person.
    pub fn set_group_key(mut self, v: bool) -> Self {
        self.is_group_key = v;
        self
    }

    /// Returns whether no flags are set.
    pub fn is_empty(&self) -> bool {
        self.as_vec().into_iter().all(|b| b == 0)
    }
}

// Numeric key capability flags.

/// This key may be used to certify other keys.
const KEY_FLAG_CERTIFY: u8 = 0x01;

/// This key may be used to sign data.
const KEY_FLAG_SIGN: u8 = 0x02;

/// This key may be used to encrypt communications.
const KEY_FLAG_ENCRYPT_FOR_TRANSPORT: u8 = 0x04;

/// This key may be used to encrypt storage.
const KEY_FLAG_ENCRYPT_AT_REST: u8 = 0x08;

/// The private component of this key may have been split by a
/// secret-sharing mechanism.
const KEY_FLAG_SPLIT_KEY: u8 = 0x10;

/// This key may be used for authentication.
const KEY_FLAG_AUTHENTICATE: u8 = 0x20;

/// The private component of this key may be in the possession of more
/// than one person.
const KEY_FLAG_GROUP_KEY: u8 = 0x80;

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn ordering() {
        let nothing = KeyFlags::default();
        let enc = KeyFlags::default()
            .set_encrypt_for_transport(true)
            .set_encrypt_at_rest(true);
        let sig = KeyFlags::default()
            .set_sign(true);
        let enc_and_auth = KeyFlags::default()
            .set_encrypt_for_transport(true)
            .set_encrypt_at_rest(true)
            .set_authenticate(true);

        assert!(nothing < enc);
        assert!(sig >= nothing);
        assert!(nothing <= enc);
        assert!(enc < enc_and_auth);
        assert!(enc_and_auth >= enc_and_auth);
        assert!(enc <= enc_and_auth);
        assert!(enc_and_auth >= enc);
        assert!(!(enc < sig));
        assert!(!(enc > sig));
    }
}