logo
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use std::time;

use crate::Error;
use crate::Result;
use crate::Cert;
use crate::types::{HashAlgorithm, SignatureType};
use crate::crypto::Signer;
use crate::packet::{UserID, UserAttribute, key, Key, signature, Signature};

impl<P: key::KeyParts> Key<P, key::SubordinateRole> {
    /// Creates a binding signature.
    ///
    /// The signature binds this subkey to `cert`. `signer` will be used
    /// to create a signature using `signature` as builder.
    /// The`hash_algo` defaults to SHA512, `creation_time` to the
    /// current time.
    ///
    /// Note that subkeys with signing capabilities need a [primary
    /// key binding signature].  If you are creating this binding
    /// signature from a previous binding signature, you can reuse the
    /// primary key binding signature if it is still valid and meets
    /// current algorithm requirements.  Otherwise, you can create one
    /// using [`SignatureBuilder::sign_primary_key_binding`].
    ///
    ///   [primary key binding signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///   [`SignatureBuilder::sign_primary_key_binding`]: signature::SignatureBuilder::sign_primary_key_binding()
    ///
    /// This function adds a creation time subpacket, a issuer
    /// fingerprint subpacket, and a issuer subpacket to the
    /// signature.
    ///
    /// # Examples
    ///
    /// This example demonstrates how to bind this key to a Cert.  Note
    /// that in general, the `CertBuilder` is a better way to add
    /// subkeys to a Cert.
    ///
    /// ```
    /// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*};
    /// # fn main() -> Result<()> {
    /// use sequoia_openpgp::policy::StandardPolicy;
    /// let p = &StandardPolicy::new();
    ///
    /// // Generate a Cert, and create a keypair from the primary key.
    /// let (cert, _) = CertBuilder::new().generate()?;
    /// let mut keypair = cert.primary_key().key().clone()
    ///     .parts_into_secret()?.into_keypair()?;
    ///
    /// // Let's add an encryption subkey.
    /// let flags = KeyFlags::empty().set_storage_encryption();
    /// assert_eq!(cert.keys().with_policy(p, None).alive().revoked(false)
    ///                .key_flags(&flags).count(),
    ///            0);
    ///
    /// // Generate a subkey and a binding signature.
    /// let subkey: Key<_, key::SubordinateRole> =
    ///     Key4::generate_ecc(false, Curve::Cv25519)?
    ///     .into();
    /// let builder = signature::SignatureBuilder::new(SignatureType::SubkeyBinding)
    ///     .set_key_flags(flags.clone())?;
    /// let binding = subkey.bind(&mut keypair, &cert, builder)?;
    ///
    /// // Now merge the key and binding signature into the Cert.
    /// let cert = cert.insert_packets(vec![Packet::from(subkey),
    ///                                    binding.into()])?;
    ///
    /// // Check that we have an encryption subkey.
    /// assert_eq!(cert.keys().with_policy(p, None).alive().revoked(false)
    ///                .key_flags(flags).count(),
    ///            1);
    /// # Ok(()) }
    pub fn bind(&self, signer: &mut dyn Signer, cert: &Cert,
                signature: signature::SignatureBuilder)
        -> Result<Signature>
    {
        signature.sign_subkey_binding(
            signer, cert.primary_key().key(), self)
    }
}

impl UserID {
    /// Creates a binding signature.
    ///
    /// The signature binds this User ID to `cert`. `signer` will be used
    /// to create a signature using `signature` as builder.
    /// The`hash_algo` defaults to SHA512, `creation_time` to the
    /// current time.
    ///
    /// This function adds a creation time subpacket, a issuer
    /// fingerprint subpacket, and a issuer subpacket to the
    /// signature.
    ///
    /// # Examples
    ///
    /// This example demonstrates how to bind this User ID to a Cert.
    /// Note that in general, the `CertBuilder` is a better way to add
    /// User IDs to a Cert.
    ///
    /// ```
    /// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*};
    /// # fn main() -> Result<()> {
    /// // Generate a Cert, and create a keypair from the primary key.
    /// let (cert, _) = CertBuilder::new().generate()?;
    /// let mut keypair = cert.primary_key().key().clone()
    ///     .parts_into_secret()?.into_keypair()?;
    /// assert_eq!(cert.userids().len(), 0);
    ///
    /// // Generate a User ID and a binding signature.
    /// let userid = UserID::from("test@example.org");
    /// let builder =
    ///     signature::SignatureBuilder::new(SignatureType::PositiveCertification);
    /// let binding = userid.bind(&mut keypair, &cert, builder)?;
    ///
    /// // Now merge the User ID and binding signature into the Cert.
    /// let cert = cert.insert_packets(vec![Packet::from(userid),
    ///                                    binding.into()])?;
    ///
    /// // Check that we have a User ID.
    /// assert_eq!(cert.userids().len(), 1);
    /// # Ok(()) }
    pub fn bind(&self, signer: &mut dyn Signer, cert: &Cert,
                signature: signature::SignatureBuilder)
                -> Result<Signature>
    {
        signature.sign_userid_binding(
            signer, cert.primary_key().key(), self)
    }

    /// Returns a certification for the User ID.
    ///
    /// The signature binds this User ID to `cert`. `signer` will be
    /// used to create a certification signature of type
    /// `signature_type`.  `signature_type` defaults to
    /// `SignatureType::GenericCertification`, `hash_algo` to SHA512,
    /// `creation_time` to the current time.
    ///
    /// This function adds a creation time subpacket, a issuer
    /// fingerprint subpacket, and a issuer subpacket to the
    /// signature.
    ///
    /// # Errors
    ///
    /// Returns `Error::InvalidArgument` if `signature_type` is not
    /// one of `SignatureType::{Generic, Persona, Casual,
    /// Positive}Certification`
    ///
    /// # Examples
    ///
    /// This example demonstrates how to certify a User ID.
    ///
    /// ```
    /// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*};
    /// # fn main() -> Result<()> {
    /// // Generate a Cert, and create a keypair from the primary key.
    /// let (alice, _) = CertBuilder::new()
    ///     .set_primary_key_flags(KeyFlags::empty().set_certification())
    ///     .add_userid("alice@example.org")
    ///     .generate()?;
    /// let mut keypair = alice.primary_key().key().clone()
    ///     .parts_into_secret()?.into_keypair()?;
    ///
    /// // Generate a Cert for Bob.
    /// let (bob, _) = CertBuilder::new()
    ///     .set_primary_key_flags(KeyFlags::empty().set_certification())
    ///     .add_userid("bob@example.org")
    ///     .generate()?;
    ///
    /// // Alice now certifies the binding between `bob@example.org` and `bob`.
    /// let certification =
    ///     bob.userids().nth(0).unwrap()
    ///     .certify(&mut keypair, &bob, SignatureType::PositiveCertification,
    ///              None, None)?;
    ///
    /// // `certification` can now be used, e.g. by merging it into `bob`.
    /// let bob = bob.insert_packets(certification)?;
    ///
    /// // Check that we have a certification on the User ID.
    /// assert_eq!(bob.userids().nth(0).unwrap()
    ///            .certifications().count(), 1);
    /// # Ok(()) }
    pub fn certify<S, H, T>(&self, signer: &mut dyn Signer, cert: &Cert,
                            signature_type: S,
                            hash_algo: H, creation_time: T)
        -> Result<Signature>
        where S: Into<Option<SignatureType>>,
              H: Into<Option<HashAlgorithm>>,
              T: Into<Option<time::SystemTime>>
    {
        let typ = signature_type.into();
        let typ = match typ {
            Some(SignatureType::GenericCertification)
                | Some(SignatureType::PersonaCertification)
                | Some(SignatureType::CasualCertification)
                | Some(SignatureType::PositiveCertification) => typ.unwrap(),
            Some(t) => return Err(Error::InvalidArgument(
                format!("Invalid signature type: {}", t)).into()),
            None => SignatureType::GenericCertification,
        };
        let mut sig = signature::SignatureBuilder::new(typ);
        if let Some(algo) = hash_algo.into() {
            sig = sig.set_hash_algo(algo);
        }
        if let Some(creation_time) = creation_time.into() {
            sig = sig.set_signature_creation_time(creation_time)?;
        }
        self.bind(signer, cert, sig)
    }
}

impl UserAttribute {
    /// Creates a binding signature.
    ///
    /// The signature binds this user attribute to `cert`. `signer`
    /// will be used to create a signature using `signature` as
    /// builder.  The`hash_algo` defaults to SHA512, `creation_time`
    /// to the current time.
    ///
    /// This function adds a creation time subpacket, a issuer
    /// fingerprint subpacket, and a issuer subpacket to the
    /// signature.
    ///
    /// # Examples
    ///
    /// This example demonstrates how to bind this user attribute to a
    /// Cert.  Note that in general, the `CertBuilder` is a better way
    /// to add User IDs to a Cert.
    ///
    /// ```
    /// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*,
    /// #                       packet::user_attribute::*};
    /// # fn main() -> Result<()> {
    /// // Generate a Cert, and create a keypair from the primary key.
    /// let (cert, _) = CertBuilder::new()
    ///     .generate()?;
    /// let mut keypair = cert.primary_key().key().clone()
    ///     .parts_into_secret()?.into_keypair()?;
    /// assert_eq!(cert.userids().len(), 0);
    ///
    /// // Generate a user attribute and a binding signature.
    /// let user_attr = UserAttribute::new(&[
    ///     Subpacket::Image(
    ///         Image::Private(100, vec![0, 1, 2].into_boxed_slice())),
    /// ])?;
    /// let builder =
    ///     signature::SignatureBuilder::new(SignatureType::PositiveCertification);
    /// let binding = user_attr.bind(&mut keypair, &cert, builder)?;
    ///
    /// // Now merge the user attribute and binding signature into the Cert.
    /// let cert = cert.insert_packets(vec![Packet::from(user_attr),
    ///                                    binding.into()])?;
    ///
    /// // Check that we have a user attribute.
    /// assert_eq!(cert.user_attributes().count(), 1);
    /// # Ok(()) }
    pub fn bind(&self, signer: &mut dyn Signer, cert: &Cert,
                signature: signature::SignatureBuilder)
        -> Result<Signature>
    {
        signature.sign_user_attribute_binding(
            signer, cert.primary_key().key(), self)
    }

    /// Returns a certification for the user attribute.
    ///
    /// The signature binds this user attribute to `cert`. `signer` will be
    /// used to create a certification signature of type
    /// `signature_type`.  `signature_type` defaults to
    /// `SignatureType::GenericCertification`, `hash_algo` to SHA512,
    /// `creation_time` to the current time.
    ///
    /// This function adds a creation time subpacket, a issuer
    /// fingerprint subpacket, and a issuer subpacket to the
    /// signature.
    ///
    /// # Errors
    ///
    /// Returns `Error::InvalidArgument` if `signature_type` is not
    /// one of `SignatureType::{Generic, Persona, Casual,
    /// Positive}Certification`
    ///
    /// # Examples
    ///
    /// This example demonstrates how to certify a User ID.
    ///
    /// ```
    /// # use sequoia_openpgp::{*, packet::prelude::*, types::*, cert::*,
    /// #                       packet::user_attribute::*};
    /// # fn main() -> Result<()> {
    /// // Generate a Cert, and create a keypair from the primary key.
    /// let (alice, _) = CertBuilder::new()
    ///     .add_userid("alice@example.org")
    ///     .generate()?;
    /// let mut keypair = alice.primary_key().key().clone()
    ///     .parts_into_secret()?.into_keypair()?;
    ///
    /// // Generate a Cert for Bob.
    /// let user_attr = UserAttribute::new(&[
    ///     Subpacket::Image(
    ///         Image::Private(100, vec![0, 1, 2].into_boxed_slice())),
    /// ])?;
    /// let (bob, _) = CertBuilder::new()
    ///     .set_primary_key_flags(KeyFlags::empty().set_certification())
    ///     .add_user_attribute(user_attr)
    ///     .generate()?;
    ///
    /// // Alice now certifies the binding between `bob@example.org` and `bob`.
    /// let certification =
    ///     bob.user_attributes().nth(0).unwrap()
    ///     .certify(&mut keypair, &bob, SignatureType::PositiveCertification,
    ///              None, None)?;
    ///
    /// // `certification` can now be used, e.g. by merging it into `bob`.
    /// let bob = bob.insert_packets(certification)?;
    ///
    /// // Check that we have a certification on the User ID.
    /// assert_eq!(bob.user_attributes().nth(0).unwrap()
    ///            .certifications().count(),
    ///            1);
    /// # Ok(()) }
    pub fn certify<S, H, T>(&self, signer: &mut dyn Signer, cert: &Cert,
                            signature_type: S,
                            hash_algo: H, creation_time: T)
        -> Result<Signature>
        where S: Into<Option<SignatureType>>,
              H: Into<Option<HashAlgorithm>>,
              T: Into<Option<time::SystemTime>>
    {
        let typ = signature_type.into();
        let typ = match typ {
            Some(SignatureType::GenericCertification)
                | Some(SignatureType::PersonaCertification)
                | Some(SignatureType::CasualCertification)
                | Some(SignatureType::PositiveCertification) => typ.unwrap(),
            Some(t) => return Err(Error::InvalidArgument(
                format!("Invalid signature type: {}", t)).into()),
            None => SignatureType::GenericCertification,
        };
        let mut sig = signature::SignatureBuilder::new(typ);
        if let Some(algo) = hash_algo.into() {
            sig = sig.set_hash_algo(algo);
        }
        if let Some(creation_time) = creation_time.into() {
            sig = sig.set_signature_creation_time(creation_time)?;
        }
        self.bind(signer, cert, sig)
    }
}