1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
//! A certificate component and its associated signatures.
//!
//! Certificates ([`Cert`]s) are a collection of components where each
//! component corresponds to a [`Packet`], and each component has zero
//! or more associated [`Signature`]s.  A [`ComponentBundle`]
//! encapsulates a component and its associated signatures.
//!
//! Sequoia supports four different kinds of components: [`Key`]s,
//! [`UserID`]s, [`UserAttribute`]s, and [`Unknown`] components.  The
//! `Unknown` component has two purposes.  First, it is used to store
//! packets that appear in a certificate and have an unknown [`Tag`].
//! By not silently dropping these packets, it is possible to round
//! trip certificates without losing any information.  This provides a
//! measure of future compatibility.  Second, the `Unknown` component
//! is used to store unsupported components.  For instance, Sequoia
//! doesn't support v3 `Key`s, which are deprecated, or v5 `Key`s,
//! which are still being standardized.  Because these keys are
//! effectively unusable, they are stored as `Unknown` components
//! instead of `Key`s.
//!
//! There are four types of signatures associated with a component:
//! self signatures, self revocations, third-party signatures, and
//! third-party revocations.  When parsing a certificate, self
//! signatures and self revocations are checked for validity and
//! invalid signatures and revocations are discarded.  Since the keys
//! are not normally available, third-party signatures and third-party
//! revocations cannot be rigorously (i.e., cryptographically) checked
//! for validity.
//!
//! With the exception of the primary key, a component's self
//! signatures are binding signatures.  A binding signature firstly
//! binds the component to the certificate.  That is, it provides
//! cryptographic evidence that the certificate holder intended for
//! the component to be associated with the certificate.  Binding
//! signatures also provide information about the component.  For
//! instance, the binding signature for a subkey includes its
//! capabilities, and its expiry time.
//!
//! Since the primary key is the embodiment of the certificate, there
//! is nothing to bind it to.  Correspondingly, self signatures on a
//! primary key are called direct key signatures.  Direct key
//! signatures are used to provide information about the whole
//! certificate.  For instance, they can include the default `Key`
//! expiry time.  This is used if a subkey's binding signature doesn't
//! include a expiry.
//!
//! Self-revocations are revocation certificates issued by the key
//! certificate holder.
//!
//! Third-party signatures are typically signatures certifying that a
//! `User ID` or `User Attribute` accurately describes the certificate
//! holder.  This information is used by trust models, like the Web of
//! Trust, to indirectly authenticate keys.
//!
//! Third-party revocations are revocations issued by another
//! certificate.  They should normally only be respected if the
//! certificate holder made the issuer a so-called [designated
//! revoker].
//!
//! # Important
//!
//! When looking up information about a component, it is generally
//! better to use the [`ComponentAmalgamation`] or [`KeyAmalgamation`]
//! data structures.  These data structures provide convenience
//! methods that implement the [complicated semantics] for correctly
//! locating information.
//!
//! [`Cert`]: ../index.html
//! [`Packet`]: ../../packet/index.html
//! [`Signature`]: ../../packet/signature/index.html
//! [`ComponentBundle`]: ./struct.ComponentBundle.html
//! [`Key`]: ../../packet/key/index.html
//! [`UserID`]: ../../packet/struct.UserID.html
//! [`UserAttribute`]: ../../packet/user_attribute/index.html
//! [`Unknown`]: ../../packet/struct.Unknown.html
//! [`Tag`]: ../../packet/enum.Tag.html
//! [designated revoker]: https://tools.ietf.org/html/rfc4880#section-5.2.3.15
//! [`ComponentAmalgamation`]: ../amalgamation/index.html
//! [`KeyAmalgamation`]: ../key_amalgamation/index.html
//! [complicated semantics]: https://tools.ietf.org/html/rfc4880#section-5.2.3.3

use std::time;
use std::ops::Deref;

use crate::{
    Error,
    packet::Signature,
    packet::Key,
    packet::key,
    packet::UserID,
    packet::UserAttribute,
    packet::Unknown,
    Packet,
    policy::Policy,
    Result,
};
use crate::types::{
    RevocationType,
    RevocationStatus,
};

use super::{
    sig_cmp,
    canonical_signature_order,
};

/// A certificate component and its associated signatures.
///
/// [See the module level documentation](index.html) for a detailed
/// description.
#[derive(Debug, Clone, PartialEq)]
pub struct ComponentBundle<C> {
    pub(crate) component: C,

    // Self signatures.
    pub(crate) self_signatures: Vec<Signature>,

    // Third-party certifications.  (In general, this will only be by
    // designated revokers.)
    pub(crate) certifications: Vec<Signature>,

    // Self revocations.
    pub(crate) self_revocations: Vec<Signature>,

    // Third-party revocations (e.g., designated revokers).
    pub(crate) other_revocations: Vec<Signature>,
}

/// A key (primary or subkey, public or private) and any associated
/// signatures.
///
/// [See the module level documentation.](index.html)
pub type KeyBundle<KeyPart, KeyRole> = ComponentBundle<Key<KeyPart, KeyRole>>;

/// A primary key and any associated signatures.
///
/// [See the module level documentation.](index.html)
pub type PrimaryKeyBundle<KeyPart> =
    KeyBundle<KeyPart, key::PrimaryRole>;

/// A subkey and any associated signatures.
///
/// [See the module level documentation.](index.html)
pub type SubkeyBundle<KeyPart>
    = KeyBundle<KeyPart, key::SubordinateRole>;

/// A User ID and any associated signatures.
///
/// [See the module level documentation.](index.html)
pub type UserIDBundle = ComponentBundle<UserID>;

/// A User Attribute and any associated signatures.
///
/// [See the module level documentation.](index.html)
pub type UserAttributeBundle = ComponentBundle<UserAttribute>;

/// An unknown component and any associated signatures.
///
/// Note: all signatures are stored as certifications.
///
/// [See the module level documentation.](index.html)
pub type UnknownBundle = ComponentBundle<Unknown>;


impl<C> Deref for ComponentBundle<C>
{
    type Target = C;

    fn deref(&self) -> &Self::Target {
        &self.component
    }
}

impl<C> ComponentBundle<C> {
    /// Returns a reference to the bundle's component.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display some information about any unknown components.
    /// for u in cert.unknowns() {
    ///     eprintln!(" - {:?}", u.component());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn component(&self) -> &C {
        &self.component
    }

    /// Returns a mutable reference to the component.
    fn component_mut(&mut self) -> &mut C {
        &mut self.component
    }

    /// Returns the active binding signature at time `t`.
    ///
    /// The active binding signature is the most recent, non-revoked
    /// self-signature that is valid according to the `policy` and
    /// alive at time `t` (`creation time <= t`, `t < expiry`).  If
    /// there are multiple such signatures then the signatures are
    /// ordered by their MPIs interpreted as byte strings.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display information about each User ID's current active
    /// // binding signature (the `time` parameter is `None`), if any.
    /// for ua in cert.userids() {
    ///     eprintln!("{:?}", ua.binding_signature(p, None));
    /// }
    /// # Ok(()) }
    /// ```
    pub fn binding_signature<T>(&self, policy: &dyn Policy, t: T)
                                -> Result<&Signature>
        where T: Into<Option<time::SystemTime>>
    {
        let t = t.into().unwrap_or_else(time::SystemTime::now);

        // Recall: the signatures are sorted by their creation time in
        // descending order, i.e., newest first.
        //
        // We want the newest signature that is older than t.  So,
        // search for `t`.

        let i =
            // Usually, the first signature is what we are looking for.
            // Short circuit the binary search.
            if Some(t) >= self.self_signatures.get(0)
                              .and_then(|s| s.signature_creation_time())
            {
                0
            } else {
                match self.self_signatures.binary_search_by(
                    |s| canonical_signature_order(
                        s.signature_creation_time(), Some(t)))
                {
                    // If there are multiple matches, then we need to search
                    // backwards to find the first one.  Consider:
                    //
                    //     t: 9 8 8 8 8 7
                    //     i: 0 1 2 3 4 5
                    //
                    // If we are looking for t == 8, then binary_search could
                    // return index 1, 2, 3 or 4.
                    Ok(mut i) => {
                        while i > 0
                            && self.self_signatures[i - 1].signature_creation_time()
                            == Some(t)
                        {
                            i -= 1;
                        }
                        i
                    }

                    // There was no match.  `i` is where a new element could
                    // be inserted while maintaining the sorted order.
                    // Consider:
                    //
                    //    t: 9 8 6 5
                    //    i: 0 1 2 3
                    //
                    // If we are looing for t == 7, then binary_search will
                    // return i == 2.  That's exactly where we should start
                    // looking.
                    Err(i) => i,
                }
            };

        let mut sig = None;

        // Prefer the first error, which is the error arising from the
        // most recent binding signature that wasn't created after
        // `t`.
        let mut error = None;

        'next_sig: for s in self.self_signatures[i..].iter() {
            if let Err(e) = s.signature_alive(t, time::Duration::new(0, 0)) {
                // We know that t >= signature's creation time.  So,
                // it is expired.  But an older signature might not
                // be.  So, keep trying.
                if error.is_none() {
                    error = Some(e);
                }
                continue;
            }

            if let Err(e) = policy.signature(s) {
                if error.is_none() {
                    error = Some(e);
                }
                continue;
            }

            // The signature is good, but we may still need to verify the
            // back sig.
            if s.typ() == crate::types::SignatureType::SubkeyBinding &&
                s.key_flags().map(|kf| kf.for_signing()).unwrap_or(false)
            {
                let mut n = 0;
                let mut one_good_backsig = false;
                'next_backsig: for backsig in s.embedded_signatures() {
                    n += 1;
                    if let Err(e) = backsig.signature_alive(
                        t, time::Duration::new(0, 0))
                    {
                        // The primary key binding signature is not
                        // alive.
                        if error.is_none() {
                            error = Some(e);
                        }
                        continue 'next_backsig;
                    }

                    if let Err(e) = policy.signature(backsig) {
                        if error.is_none() {
                            error = Some(e);
                        }
                        continue 'next_backsig;
                    }

                    one_good_backsig = true;
                }

                if n == 0 {
                    // This shouldn't happen because
                    // Signature::verify_subkey_binding checks for the
                    // primary key binding signature.  But, better be
                    // safe.
                    if error.is_none() {
                        error = Some(Error::BadSignature(
                            "Primary key binding signature missing".into())
                                     .into());
                    }
                    continue 'next_sig;
                }

                if ! one_good_backsig {
                    continue 'next_sig;
                }
            }

            sig = Some(s);
            break;
        }

        if let Some(sig) = sig {
            Ok(sig)
        } else if let Some(err) = error {
            Err(err)
        } else {
            Err(Error::NoBindingSignature(t).into())
        }
    }

    /// Returns the component's self-signatures.
    ///
    /// The signatures are validated, and they are sorted by their
    /// creation time, most recent first.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// for (i, ka) in cert.keys().enumerate() {
    ///     eprintln!("Key #{} ({}) has {:?} self signatures",
    ///               i, ka.fingerprint(),
    ///               ka.self_signatures().len());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn self_signatures(&self) -> &[Signature] {
        &self.self_signatures
    }

    /// Returns the component's third-party certifications.
    ///
    /// The signatures are *not* validated.  They are sorted by their
    /// creation time, most recent first.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// for ua in cert.userids() {
    ///     eprintln!("User ID {} has {:?} unverified, third-party certifications",
    ///               String::from_utf8_lossy(ua.userid().value()),
    ///               ua.certifications().len());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn certifications(&self) -> &[Signature] {
        &self.certifications
    }

    /// Returns the component's revocations that were issued by the
    /// certificate holder.
    ///
    /// The revocations are validated, and they are sorted by their
    /// creation time, most recent first.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// for u in cert.userids() {
    ///     eprintln!("User ID {} has {:?} revocation certificates.",
    ///               String::from_utf8_lossy(u.userid().value()),
    ///               u.self_revocations().len());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn self_revocations(&self) -> &[Signature] {
        &self.self_revocations
    }

    /// Returns the component's revocations that were issued by other
    /// certificates.
    ///
    /// The revocations are *not* validated.  They are sorted by their
    /// creation time, most recent first.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// for u in cert.userids() {
    ///     eprintln!("User ID {} has {:?} unverified, third-party revocation certificates.",
    ///               String::from_utf8_lossy(u.userid().value()),
    ///               u.other_revocations().len());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn other_revocations(&self) -> &[Signature] {
        &self.other_revocations
    }

    /// Returns the component's revocation status at time `t`.
    ///
    /// A component is considered to be revoked at time `t` if:
    ///
    ///   - There is a live revocation at time `t` that is newer than
    ///     all live self signatures at time `t`.
    ///
    ///   - `hard_revocations_are_final` is true, and there is a hard
    ///     revocation (even if it is not yet live at time `t`, and
    ///     even if there is a newer self-signature).
    ///
    /// selfsig must be the newest live self signature at time `t`.
    pub(crate) fn _revocation_status<'a, T>(&'a self, policy: &dyn Policy, t: T,
                                            hard_revocations_are_final: bool,
                                            selfsig: Option<&Signature>)
        -> RevocationStatus<'a>
        where T: Into<Option<time::SystemTime>>
    {
        // Fallback time.
        let time_zero = || time::UNIX_EPOCH;
        let t = t.into().unwrap_or_else(time::SystemTime::now);
        let selfsig_creation_time
            = selfsig.and_then(|s| s.signature_creation_time())
                     .unwrap_or_else(time_zero);

        tracer!(super::TRACE, "ComponentBundle::_revocation_status", 0);
        t!("hard_revocations_are_final: {}, selfsig: {:?}, t: {:?}",
           hard_revocations_are_final,
           selfsig_creation_time,
           t);
        if let Some(selfsig) = selfsig {
            assert!(
                selfsig.signature_alive(t, time::Duration::new(0, 0)).is_ok());
        }

        let check = |revs: &'a [Signature]| -> Option<Vec<&'a Signature>> {
            let revs = revs.iter().filter_map(|rev| {
                if let Err(err) = policy.signature(rev) {
                    t!("  revocation rejected by caller policy: {}", err);
                    None
                } else if hard_revocations_are_final
                    && rev.reason_for_revocation()
                    .map(|(r, _)| {
                        r.revocation_type() == RevocationType::Hard
                    })
                // If there is no Reason for Revocation
                // packet, assume that it is a hard
                // revocation.
                    .unwrap_or(true)
                {
                    t!("  got a hard revocation: {:?}, {:?}",
                       rev.signature_creation_time()
                       .unwrap_or_else(time_zero),
                       rev.reason_for_revocation()
                       .map(|r| (r.0, String::from_utf8_lossy(r.1))));
                    Some(rev)
                } else if selfsig_creation_time
                    > rev.signature_creation_time().unwrap_or_else(time_zero)
                {
                    // This comes after the hard revocation check,
                    // because a hard revocation is always valid.
                    t!("  newer binding signature trumps soft revocation ({:?} > {:?})",
                       selfsig_creation_time,
                       rev.signature_creation_time().unwrap_or_else(time_zero));
                    None
                } else if let Err(err)
                    = rev.signature_alive(t, time::Duration::new(0, 0))
                {
                    // This comes after the hard revocation check,
                    // because a hard revocation is always valid.
                    t!("  revocation not alive ({:?} - {:?}): {}",
                       rev.signature_creation_time().unwrap_or_else(time_zero),
                       rev.signature_validity_period()
                           .unwrap_or_else(|| time::Duration::new(0, 0)),
                       err);
                    None
                } else {
                    t!("  got a revocation: {:?} ({:?})",
                       rev.signature_creation_time().unwrap_or_else(time_zero),
                       rev.reason_for_revocation()
                           .map(|r| (r.0, String::from_utf8_lossy(r.1))));
                    Some(rev)
                }
            }).collect::<Vec<&Signature>>();

            if revs.len() == 0 {
                None
            } else {
                Some(revs)
            }
        };

        if let Some(revs) = check(&self.self_revocations) {
            RevocationStatus::Revoked(revs)
        } else if let Some(revs) = check(&self.other_revocations) {
            RevocationStatus::CouldBe(revs)
        } else {
            RevocationStatus::NotAsFarAsWeKnow
        }
    }

    /// Turns the `ComponentBundle` into an iterator over its
    /// `Packet`s.
    ///
    /// The signatures are ordered as follows:
    ///
    ///   - Self revocations,
    ///   - Self signatures,
    ///   - Third-party signatures, and
    ///   - Third-party revocations.
    ///
    /// For a given type of signature, the signatures are ordered by
    /// their creation time, most recent first.
    ///
    /// When turning the `Key` in a `KeyBundle` into a `Packet`, this
    /// function uses the component's type (`C`) to determine the
    /// packet's type; the type is not a function of whether the key
    /// has secret key material.
    pub(crate) fn into_packets<'a>(self) -> impl Iterator<Item=Packet>
        where Packet: From<C>
    {
        let p : Packet = self.component.into();
        std::iter::once(p)
            .chain(self.self_revocations.into_iter().map(|s| s.into()))
            .chain(self.self_signatures.into_iter().map(|s| s.into()))
            .chain(self.certifications.into_iter().map(|s| s.into()))
            .chain(self.other_revocations.into_iter().map(|s| s.into()))
    }

    // Sorts and dedups the binding's signatures.
    //
    // Note: this uses Signature::normalized_eq to compare signatures.
    // That function ignores unhashed packets.  If there are two
    // signatures that only differ in their unhashed subpackets, they
    // will be deduped.  The unhashed areas are merged as discussed in
    // Signature::merge.
    pub(crate) fn sort_and_dedup(&mut self)
    {
        // `same_bucket` function for Vec::dedup_by that compares
        // signatures and merges them if they are equal modulo
        // unhashed subpackets.
        fn sig_merge(a: &mut Signature, b: &mut Signature) -> bool {
            // If a == b, a is removed.  Hence, we merge into b.
            if a.normalized_eq(b) {
                b.merge_internal(a)
                    .expect("checked for equality above");
                true
            } else {
                false
            }
        }

        // If two signatures are merged, we also do some fixups.  Make
        // sure we also do this to signatures that are not merged, so
        // that `cert.merge(cert) == cert`.
        fn sig_fixup(sig: &mut Signature) {
            // Add missing issuer information.  This is a best effort
            // though.  If the unhashed area is full, there is nothing
            // we can do.
            let _ = sig.add_missing_issuers();

            // Merging Signatures sorts the unhashed subpacket area.
            // Do the same.
            sig.unhashed_area_mut().sort();
        }

        self.self_signatures.sort_by(Signature::normalized_cmp);
        self.self_signatures.dedup_by(sig_merge);
        // Order self signatures so that the most recent one comes
        // first.
        self.self_signatures.sort_by(sig_cmp);
        self.self_signatures.iter_mut().for_each(sig_fixup);

        self.certifications.sort_by(Signature::normalized_cmp);
        self.certifications.dedup_by(sig_merge);
        // There is no need to sort the certifications, but doing so
        // has the advantage that the most recent ones (and therefore
        // presumably the more relevant ones) come first.  Also,
        // cert::test::signature_order checks that the signatures are
        // sorted.
        self.certifications.sort_by(sig_cmp);
        self.certifications.iter_mut().for_each(sig_fixup);

        self.self_revocations.sort_by(Signature::normalized_cmp);
        self.self_revocations.dedup_by(sig_merge);
        self.self_revocations.sort_by(sig_cmp);
        self.self_revocations.iter_mut().for_each(sig_fixup);

        self.other_revocations.sort_by(Signature::normalized_cmp);
        self.other_revocations.dedup_by(sig_merge);
        self.other_revocations.sort_by(sig_cmp);
        self.other_revocations.iter_mut().for_each(sig_fixup);
    }
}

impl<P: key::KeyParts, R: key::KeyRole> ComponentBundle<Key<P, R>> {
    /// Returns a reference to the key.
    ///
    /// This is just a type-specific alias for
    /// [`ComponentBundle::component`].
    ///
    /// [`ComponentBundle::component`]: #method.component
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display some information about the keys.
    /// for ka in cert.keys() {
    ///     eprintln!(" - {:?}", ka.key());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn key(&self) -> &Key<P, R> {
        self.component()
    }

    /// Returns a mut reference to the key.
    pub(crate) fn key_mut(&mut self) -> &mut Key<P, R> {
        self.component_mut()
    }
}

impl<P: key::KeyParts> ComponentBundle<Key<P, key::SubordinateRole>> {
    /// Returns the subkey's revocation status at time `t`.
    ///
    /// A subkey is revoked at time `t` if:
    ///
    ///   - There is a live revocation at time `t` that is newer than
    ///     all live self signatures at time `t`, or
    ///
    ///   - There is a hard revocation (even if it is not live at
    ///     time `t`, and even if there is a newer self-signature).
    ///
    /// Note: Certs and subkeys have different criteria from User IDs
    /// and User Attributes.
    ///
    /// Note: this only returns whether this subkey is revoked; it
    /// does not imply anything about the Cert or other components.
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display the subkeys' revocation status.
    /// for ka in cert.keys().subkeys() {
    ///     eprintln!(" Revocation status of {}: {:?}",
    ///               ka.fingerprint(), ka.revocation_status(p, None));
    /// }
    /// # Ok(()) }
    /// ```
    pub fn revocation_status<T>(&self, policy: &dyn Policy, t: T)
        -> RevocationStatus
        where T: Into<Option<time::SystemTime>>
    {
        let t = t.into();
        self._revocation_status(policy, t, true,
                                self.binding_signature(policy, t).ok())
    }
}

impl ComponentBundle<UserID> {
    /// Returns a reference to the User ID.
    ///
    /// This is just a type-specific alias for
    /// [`ComponentBundle::component`].
    ///
    /// [`ComponentBundle::component`]: #method.component
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display some information about the User IDs.
    /// for ua in cert.userids() {
    ///     eprintln!(" - {:?}", ua.userid());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn userid(&self) -> &UserID {
        self.component()
    }

    /// Returns the User ID's revocation status at time `t`.<a
    /// name="userid_revocation_status"></a>
    ///
    /// <!-- Why we have the above anchor:
    ///      https://github.com/rust-lang/rust/issues/71912 -->
    ///
    /// A User ID is revoked at time `t` if:
    ///
    ///   - There is a live revocation at time `t` that is newer than
    ///     all live self signatures at time `t`.
    ///
    /// Note: Certs and subkeys have different criteria from User IDs
    /// and User Attributes.
    ///
    /// Note: this only returns whether this User ID is revoked; it
    /// does not imply anything about the Cert or other components.
    //
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display the User IDs' revocation status.
    /// for ua in cert.userids() {
    ///     eprintln!(" Revocation status of {}: {:?}",
    ///               String::from_utf8_lossy(ua.userid().value()),
    ///               ua.revocation_status(p, None));
    /// }
    /// # Ok(()) }
    /// ```
    pub fn revocation_status<T>(&self, policy: &dyn Policy, t: T)
        -> RevocationStatus
        where T: Into<Option<time::SystemTime>>
    {
        let t = t.into();
        self._revocation_status(policy, t, false, self.binding_signature(policy, t).ok())
    }
}

impl ComponentBundle<UserAttribute> {
    /// Returns a reference to the User Attribute.
    ///
    /// This is just a type-specific alias for
    /// [`ComponentBundle::component`].
    ///
    /// [`ComponentBundle::component`]: #method.component
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display some information about the User Attributes
    /// for ua in cert.user_attributes() {
    ///     eprintln!(" - {:?}", ua.user_attribute());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn user_attribute(&self) -> &UserAttribute {
        self.component()
    }

    /// Returns the User Attribute's revocation status at time `t`.
    ///
    /// A User Attribute is revoked at time `t` if:
    ///
    ///   - There is a live revocation at time `t` that is newer than
    ///     all live self signatures at time `t`.
    ///
    /// Note: Certs and subkeys have different criteria from User IDs
    /// and User Attributes.
    ///
    /// Note: this only returns whether this User Attribute is revoked;
    /// it does not imply anything about the Cert or other components.
    //
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display the User Attributes' revocation status.
    /// for (i, ua) in cert.user_attributes().enumerate() {
    ///     eprintln!(" Revocation status of User Attribute #{}: {:?}",
    ///               i, ua.revocation_status(p, None));
    /// }
    /// # Ok(()) }
    /// ```
    pub fn revocation_status<T>(&self, policy: &dyn Policy, t: T)
        -> RevocationStatus
        where T: Into<Option<time::SystemTime>>
    {
        let t = t.into();
        self._revocation_status(policy, t, false,
                                self.binding_signature(policy, t).ok())
    }
}

impl ComponentBundle<Unknown> {
    /// Returns a reference to the unknown component.
    ///
    /// This is just a type-specific alias for
    /// [`ComponentBundle::component`].
    ///
    /// [`ComponentBundle::component`]: #method.component
    ///
    /// # Examples
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::cert::prelude::*;
    /// #
    /// # fn main() -> openpgp::Result<()> {
    /// # let (cert, _) =
    /// #     CertBuilder::general_purpose(None, Some("alice@example.org"))
    /// #     .generate()?;
    /// // Display some information about the User Attributes
    /// for u in cert.unknowns() {
    ///     eprintln!(" - {:?}", u.unknown());
    /// }
    /// # Ok(()) }
    /// ```
    pub fn unknown(&self) -> &Unknown {
        self.component()
    }
}