1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
//! Conversions for primitive OpenPGP types.

use time;

use crate::Error;
use crate::Result;

/// Conversions for OpenPGP time stamps.
pub trait Time {
    /// Converts an OpenPGP time stamp to broken-down time.
    fn from_pgp(_: u32) -> Self;
    /// Converts broken-down time to an OpenPGP time stamp.
    fn to_pgp(&self) -> Result<u32>;
    /// Strips off any subseconds that OpenPGP cannot represent, and
    /// converts to UTC.
    fn canonicalize(self) -> Self;
}

impl Time for time::Tm {
    fn from_pgp(timestamp: u32) -> Self {
        time::at_utc(time::Timespec::new(timestamp as i64, 0))
    }

    fn to_pgp(&self) -> Result<u32> {
        let epoch = self.to_timespec().sec;
        if epoch > ::std::u32::MAX as i64 {
            return Err(Error::InvalidArgument(
                format!("Time exceeds u32 epoch: {:?}", self))
                       .into());
        }
        Ok(epoch as u32)
    }

    fn canonicalize(mut self) -> Self {
        self.tm_nsec = 0;
        self.to_utc()
    }
}

/// Conversions for OpenPGP durations.
pub trait Duration {
    /// Converts an OpenPGP duration to ISO 8601 time duration.
    fn from_pgp(_: u32) -> Self;
    /// Converts ISO 8601 time duration to an OpenPGP duration.
    fn to_pgp(&self) -> Result<u32>;
    /// Strips off any subseconds that OpenPGP cannot represent.
    fn canonicalize(self) -> Self;
}

impl Duration for time::Duration {
    fn from_pgp(duration: u32) -> Self {
        time::Duration::seconds(duration as i64)
    }

    fn to_pgp(&self) -> Result<u32> {
        let secs = self.num_seconds();
        if secs > ::std::u32::MAX as i64 {
            return Err(Error::InvalidArgument(
                format!("Duration exceeds u32: {:?}", self))
                       .into());
        }
        Ok(secs as u32)
    }

    fn canonicalize(self) -> Self {
        time::Duration::seconds(self.num_seconds())
    }
}

/// Converts buffers to and from hexadecimal numbers.
pub mod hex {
    use std::io;

    /// Encodes the given buffer as hexadecimal number.
    pub fn encode<B: AsRef<[u8]>>(buffer: B) -> String {
        super::to_hex(buffer.as_ref(), false)
    }

    /// Encodes the given buffer as hexadecimal number with spaces.
    pub fn encode_pretty<B: AsRef<[u8]>>(buffer: B) -> String {
        super::to_hex(buffer.as_ref(), true)
    }

    /// Decodes the given hexadecimal number.
    pub fn decode<H: AsRef<str>>(hex: H) -> crate::Result<Vec<u8>> {
        super::from_hex(hex.as_ref(), false)
    }

    /// Decodes the given hexadecimal number, ignoring whitespace.
    pub fn decode_pretty<H: AsRef<str>>(hex: H) -> crate::Result<Vec<u8>> {
        super::from_hex(hex.as_ref(), true)
    }

    /// Writes annotated hex dumps, like hd(1).
    ///
    /// # Example
    ///
    /// ```rust
    ///  use sequoia_openpgp::conversions::hex;
    ///
    /// let mut dumper = hex::Dumper::new(Vec::new(), "");
    /// dumper.write(&[0x89, 0x01, 0x33], "frame").unwrap();
    /// dumper.write(&[0x04], "version").unwrap();
    /// dumper.write(&[0x00], "type").unwrap();
    ///
    /// let buf = dumper.into_inner();
    /// assert_eq!(
    ///     ::std::str::from_utf8(&buf[..]).unwrap(),
    ///     "00000000  89 01 33                                           frame\n\
    ///      00000003           04                                        version\n\
    ///      00000004              00                                     type\n\
    ///      ");
    /// ```
    pub struct Dumper<W: io::Write> {
        inner: W,
        indent: String,
        offset: usize,
    }

    impl<W: io::Write> Dumper<W> {
        /// Creates a new dumper.
        ///
        /// The dump is written to `inner`.  Every line is indented with
        /// `indent`.
        pub fn new<I: AsRef<str>>(inner: W, indent: I) -> Self {
            Dumper {
                inner: inner,
                indent: indent.as_ref().into(),
                offset: 0,
            }
        }

        /// Returns the inner writer.
        pub fn into_inner(self) -> W {
            self.inner
        }

        /// Writes a chunk of data.
        ///
        /// The `msg` is printed at the end of the first line.
        pub fn write(&mut self, buf: &[u8], msg: &str) -> io::Result<()> {
            let mut first = true;
            self.write_labeled(buf, move |_, _| {
                if first {
                    first = false;
                    Some(msg.into())
                } else {
                    None
                }
            })
        }

        /// Writes a chunk of data.
        ///
        /// For each line, the given function is called to compute a
        /// label that printed at the end of the first line.  The
        /// functions first argument is the offset in the current line
        /// (0..16), the second the slice of the displayed data.
        pub fn write_labeled<L>(&mut self, buf: &[u8], mut labeler: L)
                                -> io::Result<()>
            where L: FnMut(usize, &[u8]) -> Option<String>
        {
            let mut first_label_offset = self.offset % 16;

            write!(self.inner, "{}{:08x} ", self.indent, self.offset)?;
            for i in 0 .. self.offset % 16 {
                if i != 7 {
                    write!(self.inner, "   ")?;
                } else {
                    write!(self.inner, "    ")?;
                }
            }

            let mut offset_printed = true;
            let mut data_start = 0;
            for (i, c) in buf.iter().enumerate() {
                if ! offset_printed {
                    write!(self.inner,
                           "\n{}{:08x} ", self.indent, self.offset)?;
                    offset_printed = true;
                }

                write!(self.inner, " {:02x}", c)?;
                self.offset += 1;
                match self.offset % 16 {
                    0 => {
                        if let Some(msg) = labeler(
                            first_label_offset, &buf[data_start..i + 1])
                        {
                            write!(self.inner, "   {}", msg)?;
                            // Only the first label is offset.
                            first_label_offset = 0;
                        }
                        data_start = i + 1;
                        offset_printed = false;
                    },
                    8 => write!(self.inner, " ")?,
                    _ => (),
                }
            }

            if let Some(msg) = labeler(
                first_label_offset, &buf[data_start..])
            {
                for i in self.offset % 16 .. 16 {
                    if i != 7 {
                        write!(self.inner, "   ")?;
                    } else {
                        write!(self.inner, "    ")?;
                    }
                }

                write!(self.inner, "   {}", msg)?;
            }
            writeln!(self.inner)?;
            Ok(())
        }
    }
}

/// A helpful debugging function.
#[allow(dead_code)]
pub(crate) fn to_hex(s: &[u8], pretty: bool) -> String {
    use std::fmt::Write;

    let mut result = String::new();
    for (i, b) in s.iter().enumerate() {
        // Add spaces every four digits to make the output more
        // readable.
        if pretty && i > 0 && i % 2 == 0 {
            write!(&mut result, " ").unwrap();
        }
        write!(&mut result, "{:02X}", b).unwrap();
    }
    result
}

/// A helpful function for converting a hexadecimal string to binary.
/// This function skips whitespace if `pretty` is set.
pub(crate) fn from_hex(hex: &str, pretty: bool) -> Result<Vec<u8>> {
    const BAD: u8 = 255u8;
    const X: u8 = 'x' as u8;

    let mut nibbles = hex.chars().filter_map(|x| {
        match x {
            '0' => Some(0u8),
            '1' => Some(1u8),
            '2' => Some(2u8),
            '3' => Some(3u8),
            '4' => Some(4u8),
            '5' => Some(5u8),
            '6' => Some(6u8),
            '7' => Some(7u8),
            '8' => Some(8u8),
            '9' => Some(9u8),
            'a' | 'A' => Some(10u8),
            'b' | 'B' => Some(11u8),
            'c' | 'C' => Some(12u8),
            'd' | 'D' => Some(13u8),
            'e' | 'E' => Some(14u8),
            'f' | 'F' => Some(15u8),
            'x' | 'X' if pretty => Some(X),
            _ if pretty && x.is_whitespace() => None,
            _ => Some(BAD),
        }
    }).collect::<Vec<u8>>();

    if pretty && nibbles.len() >= 2 && nibbles[0] == 0 && nibbles[1] == X {
        // Drop '0x' prefix.
        nibbles.remove(0);
        nibbles.remove(0);
    }

    if nibbles.iter().any(|&b| b == BAD || b == X) {
        // Not a hex character.
        return
            Err(Error::InvalidArgument("Invalid characters".into()).into());
    }

    // We need an even number of nibbles.
    if nibbles.len() % 2 != 0 {
        return
            Err(Error::InvalidArgument("Odd number of nibbles".into()).into());
    }

    let bytes = nibbles.chunks(2).map(|nibbles| {
        (nibbles[0] << 4) | nibbles[1]
    }).collect::<Vec<u8>>();

    Ok(bytes)
}

pub(crate) fn read_be_u64(b: &[u8]) -> u64 {
    assert_eq!(b.len(), 8);
    ((b[0] as u64) << 56) as u64
        | ((b[1] as u64) << 48)
        | ((b[2] as u64) << 40)
        | ((b[3] as u64) << 32)
        | ((b[4] as u64) << 24)
        | ((b[5] as u64) << 16)
        | ((b[6] as u64) <<  8)
        | ((b[7] as u64) <<  0)
}

pub(crate) fn write_be_u64(b: &mut [u8], n: u64) {
    assert_eq!(b.len(), 8);
    b[0] = (n >> 56) as u8;
    b[1] = (n >> 48) as u8;
    b[2] = (n >> 40) as u8;
    b[3] = (n >> 32) as u8;
    b[4] = (n >> 24) as u8;
    b[5] = (n >> 16) as u8;
    b[6] = (n >>  8) as u8;
    b[7] = (n >>  0) as u8;
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn from_hex() {
        use super::from_hex as fh;
        assert_eq!(fh("", false).ok(), Some(vec![]));
        assert_eq!(fh("0", false).ok(), None);
        assert_eq!(fh("00", false).ok(), Some(vec![0x00]));
        assert_eq!(fh("09", false).ok(), Some(vec![0x09]));
        assert_eq!(fh("0f", false).ok(), Some(vec![0x0f]));
        assert_eq!(fh("99", false).ok(), Some(vec![0x99]));
        assert_eq!(fh("ff", false).ok(), Some(vec![0xff]));
        assert_eq!(fh("000", false).ok(), None);
        assert_eq!(fh("0000", false).ok(), Some(vec![0x00, 0x00]));
        assert_eq!(fh("0009", false).ok(), Some(vec![0x00, 0x09]));
        assert_eq!(fh("000f", false).ok(), Some(vec![0x00, 0x0f]));
        assert_eq!(fh("0099", false).ok(), Some(vec![0x00, 0x99]));
        assert_eq!(fh("00ff", false).ok(), Some(vec![0x00, 0xff]));
        assert_eq!(fh("\t\n\x0c\r ", false).ok(), None);
        assert_eq!(fh("a", false).ok(), None);
        assert_eq!(fh("0x", false).ok(), None);
        assert_eq!(fh("0x0", false).ok(), None);
        assert_eq!(fh("0x00", false).ok(), None);
    }

    #[test]
    fn from_pretty_hex() {
        use super::from_hex as fh;
        assert_eq!(fh(" ", true).ok(), Some(vec![]));
        assert_eq!(fh(" 0", true).ok(), None);
        assert_eq!(fh(" 00", true).ok(), Some(vec![0x00]));
        assert_eq!(fh(" 09", true).ok(), Some(vec![0x09]));
        assert_eq!(fh(" 0f", true).ok(), Some(vec![0x0f]));
        assert_eq!(fh(" 99", true).ok(), Some(vec![0x99]));
        assert_eq!(fh(" ff", true).ok(), Some(vec![0xff]));
        assert_eq!(fh(" 00 0", true).ok(), None);
        assert_eq!(fh(" 00 00", true).ok(), Some(vec![0x00, 0x00]));
        assert_eq!(fh(" 00 09", true).ok(), Some(vec![0x00, 0x09]));
        assert_eq!(fh(" 00 0f", true).ok(), Some(vec![0x00, 0x0f]));
        assert_eq!(fh(" 00 99", true).ok(), Some(vec![0x00, 0x99]));
        assert_eq!(fh(" 00 ff", true).ok(), Some(vec![0x00, 0xff]));
        assert_eq!(fh("\t\n\x0c\r ", true).ok(), Some(vec![]));
        // Fancy Unicode spaces are ok too:
        assert_eq!(fh("     23", true).ok(), Some(vec![0x23]));
        assert_eq!(fh("a", true).ok(), None);
        assert_eq!(fh(" 0x", true).ok(), Some(vec![]));
        assert_eq!(fh(" 0x0", true).ok(), None);
        assert_eq!(fh(" 0x00", true).ok(), Some(vec![0x00]));
    }

    quickcheck! {
        fn hex_roundtrip(data: Vec<u8>) -> bool {
            let hex = super::to_hex(&data, false);
            data == super::from_hex(&hex, false).unwrap()
        }
    }

    quickcheck! {
        fn pretty_hex_roundtrip(data: Vec<u8>) -> bool {
            let hex = super::to_hex(&data, true);
            data == super::from_hex(&hex, true).unwrap()
        }
    }

    #[test]
    fn hex_dumper() {
        use super::hex::Dumper;

        let mut dumper = Dumper::new(Vec::new(), "III");
        dumper.write(&[0x89, 0x01, 0x33], "frame").unwrap();
        let buf = dumper.into_inner();
        assert_eq!(
            ::std::str::from_utf8(&buf[..]).unwrap(),
            "III00000000  \
             89 01 33                                           \
             frame\n");

        let mut dumper = Dumper::new(Vec::new(), "III");
        dumper.write(&[0x89, 0x01, 0x33, 0x89, 0x01, 0x33, 0x89, 0x01], "frame")
            .unwrap();
        let buf = dumper.into_inner();
        assert_eq!(
            ::std::str::from_utf8(&buf[..]).unwrap(),
            "III00000000  \
             89 01 33 89 01 33 89 01                            \
             frame\n");

        let mut dumper = Dumper::new(Vec::new(), "III");
        dumper.write(&[0x89, 0x01, 0x33, 0x89, 0x01, 0x33, 0x89, 0x01,
                       0x89, 0x01, 0x33, 0x89, 0x01, 0x33, 0x89, 0x01], "frame")
            .unwrap();
        let buf = dumper.into_inner();
        assert_eq!(
            ::std::str::from_utf8(&buf[..]).unwrap(),
            "III00000000  \
             89 01 33 89 01 33 89 01  89 01 33 89 01 33 89 01   \
             frame\n");

        let mut dumper = Dumper::new(Vec::new(), "III");
        dumper.write(&[0x89, 0x01, 0x33, 0x89, 0x01, 0x33, 0x89, 0x01,
                       0x89, 0x01, 0x33, 0x89, 0x01, 0x33, 0x89, 0x01,
                       0x89, 0x01, 0x33, 0x89, 0x01, 0x33, 0x89, 0x01,
                       0x89, 0x01, 0x33, 0x89, 0x01, 0x33, 0x89, 0x01], "frame")
            .unwrap();
        let buf = dumper.into_inner();
        assert_eq!(
            ::std::str::from_utf8(&buf[..]).unwrap(),
            "III00000000  \
             89 01 33 89 01 33 89 01  89 01 33 89 01 33 89 01   \
             frame\n\
             III00000010  \
             89 01 33 89 01 33 89 01  89 01 33 89 01 33 89 01\n");

        let mut dumper = Dumper::new(Vec::new(), "");
        dumper.write(&[0x89, 0x01, 0x33], "frame").unwrap();
        dumper.write(&[0x04], "version").unwrap();
        dumper.write(&[0x00], "type").unwrap();
        let buf = dumper.into_inner();
        assert_eq!(
            ::std::str::from_utf8(&buf[..]).unwrap(),
            "00000000  89 01 33                                           \
             frame\n\
             00000003           04                                        \
             version\n\
             00000004              00                                     \
             type\n\
             ");
    }

    quickcheck! {
        fn be_u64_roundtrip(n: u64) -> bool {
            let mut b = [0; 8];
            write_be_u64(&mut b, n);
            n == read_be_u64(&b)
        }
    }
}