1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//! Memory protection and encryption.
//!
//! Sequoia makes an effort to protect secrets stored in memory.  Even
//! though a process' memory should be protected from being read by an
//! adversary, there may be bugs in the program or the architecture
//! the program is running on that allow (partial) recovery of data.
//! Or, the process may be serialized to persistent storage, and its
//! memory may be inspected while it is not running.
//!
//! To reduce the window for these kind of exfiltrations, we use
//! [`Protected`] to clear the memory once it is no longer in use, and
//! [`Encrypted`] to protect long-term secrets like passwords and
//! secret keys.
//!
//!   [`Protected`]: struct.Protected.html
//!   [`Encrypted`]: struct.Encrypted.html
//!
//! Furthermore, operations involving secrets must be carried out in a
//! way that avoids leaking information.  For example, comparison
//! must be done in constant time with [`secure_cmp`].
//!
//!   [`secure_cmp`]: fn.secure_cmp.html

use std::cmp::{min, Ordering};
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::{Deref, DerefMut};
use std::pin::Pin;

use memsec;

/// Protected memory.
///
/// The memory is guaranteed not to be copied around, and is cleared
/// when the object is dropped.
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Protected;
///
/// {
///     let p: Protected = vec![0, 1, 2].into();
///     assert_eq!(p.as_ref(), &[0, 1, 2]);
/// }
///
/// // p is cleared once it goes out of scope.
/// ```
#[derive(Clone)]
pub struct Protected(Pin<Box<[u8]>>);

impl PartialEq for Protected {
    fn eq(&self, other: &Self) -> bool {
        secure_cmp(&self.0, &other.0) == Ordering::Equal
    }
}

impl Eq for Protected {}

impl Hash for Protected {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash(state);
    }
}

impl Protected {
    /// Converts to a buffer for modification.
    pub(crate) unsafe fn into_vec(self) -> Vec<u8> {
        self.iter().cloned().collect()
    }
}

impl Deref for Protected {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl AsRef<[u8]> for Protected {
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl AsMut<[u8]> for Protected {
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl DerefMut for Protected {
    fn deref_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl From<Vec<u8>> for Protected {
    fn from(v: Vec<u8>) -> Self {
        Protected(Pin::new(v.into_boxed_slice()))
    }
}

impl From<Box<[u8]>> for Protected {
    fn from(v: Box<[u8]>) -> Self {
        Protected(Pin::new(v))
    }
}

impl From<&[u8]> for Protected {
    fn from(v: &[u8]) -> Self {
        Vec::from(v).into()
    }
}

impl Drop for Protected {
    fn drop(&mut self) {
        unsafe {
            memsec::memzero(self.0.as_mut_ptr(), self.0.len());
        }
    }
}

impl fmt::Debug for Protected {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if cfg!(debug_assertions) {
            write!(f, "{:?}", self.0)
        } else {
            f.write_str("[<Redacted>]")
        }
    }
}

/// Encrypted memory.
///
/// This type encrypts sensitive data, such as secret keys, in memory
/// while they are unused, and decrypts them on demand.  This protects
/// against cross-protection-boundary readout via microarchitectural
/// flaws like Spectre or Meltdown, via attacks on physical layout
/// like Rowbleed, and even via coldboot attacks.
///
/// The key insight is that these kinds of attacks are imperfect,
/// i.e. the recovered data contains bitflips, or the attack only
/// provides a probability for any given bit.  Applied to
/// cryptographic keys, these kind of imperfect attacks are enough to
/// recover the actual key.
///
/// This implementation on the other hand, derives a sealing key from
/// a large area of memory, the "pre-key", using a key derivation
/// function.  Now, any single bitflip in the readout of the pre-key
/// will avalanche through all the bits in the sealing key, rendering
/// it unusable with no indication of where the error occurred.
///
/// This kind of protection was pioneered by OpenSSH.  The commit
/// adding it can be found
/// [here](https://marc.info/?l=openbsd-cvs&m=156109087822676).
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Encrypted;
///
/// let e = Encrypted::new(vec![0, 1, 2].into());
/// e.map(|p| {
///     // e is temporarily decrypted and made available to the closure.
///     assert_eq!(p.as_ref(), &[0, 1, 2]);
///     // p is cleared once the function returns.
/// });
/// ```
#[derive(Clone, Debug)]
pub struct Encrypted {
    ciphertext: Protected,
    iv: Protected,
}

impl PartialEq for Encrypted {
    fn eq(&self, other: &Self) -> bool {
        // Protected::eq is time-constant.
        self.map(|a| other.map(|b| a == b))
    }
}

impl Eq for Encrypted {}

impl Hash for Encrypted {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.map(|k| Hash::hash(k, state));
    }
}

/// The number of pages containing random bytes to derive the prekey
/// from.
const ENCRYPTED_MEMORY_PREKEY_PAGES: usize = 4;

/// Page size.
const ENCRYPTED_MEMORY_PAGE_SIZE: usize = 4096;

/// This module contains the code that needs to access the prekey.
///
/// Code outside of it cannot access it, because `PREKEY` is private.
mod has_access_to_prekey {
    use std::io::{self, Cursor, Write};
    use lazy_static;
    use crate::types::{AEADAlgorithm, HashAlgorithm, SymmetricAlgorithm};
    use crate::crypto::{aead, SessionKey};
    use super::*;

    lazy_static::lazy_static! {
        static ref PREKEY: Box<[Box<[u8]>]> = {
            let mut pages = Vec::new();
            for _ in 0..ENCRYPTED_MEMORY_PREKEY_PAGES {
                let mut page = vec![0; ENCRYPTED_MEMORY_PAGE_SIZE];
                crate::crypto::random(&mut page);
                pages.push(page.into());
            }
            pages.into()
        };
    }

    // Algorithms used for the memory encryption.
    //
    // The digest of the hash algorithm must be at least as large as
    // the size of the key used by the symmetric algorithm.  All
    // algorithms MUST be supported by the cryptographic library.
    const HASH_ALGO: HashAlgorithm = HashAlgorithm::SHA256;
    const SYMMETRIC_ALGO: SymmetricAlgorithm = SymmetricAlgorithm::AES256;
    const AEAD_ALGO: AEADAlgorithm = AEADAlgorithm::EAX;

    impl Encrypted {
        /// Computes the sealing key used to encrypt the memory.
        fn sealing_key() -> SessionKey {
            let mut ctx = HASH_ALGO.context()
                .expect("Mandatory algorithm unsupported");
            PREKEY.iter().for_each(|page| ctx.update(page));
            let mut sk: SessionKey = vec![0; 256/8].into();
            ctx.digest(&mut sk);
            sk
        }

        /// Encrypts the given chunk of memory.
        pub fn new(p: Protected) -> Self {
            let mut iv =
                vec![0; AEAD_ALGO.iv_size()
                            .expect("Mandatory algorithm unsupported")];
            crate::crypto::random(&mut iv);

            let mut ciphertext = Vec::new();
            {
                let mut encryptor =
                    aead::Encryptor::new(1,
                                         SYMMETRIC_ALGO,
                                         AEAD_ALGO,
                                         4096,
                                         &iv,
                                         &Self::sealing_key(),
                                         &mut ciphertext)
                    .expect("Mandatory algorithm unsupported");
                encryptor.write_all(&p).unwrap();
                encryptor.finish().unwrap();
            }

            Encrypted {
                ciphertext: ciphertext.into(),
                iv: iv.into(),
            }
        }

        /// Maps the given function over the temporarily decrypted
        /// memory.
        pub fn map<F, T>(&self, mut fun: F) -> T
            where F: FnMut(&Protected) -> T
        {
            let mut plaintext = Vec::new();
            let mut decryptor =
                aead::Decryptor::new(1,
                                     SYMMETRIC_ALGO,
                                     AEAD_ALGO,
                                     4096,
                                     &self.iv,
                                     &Self::sealing_key(),
                                     Cursor::new(&self.ciphertext))
                .expect("Mandatory algorithm unsupported");
            io::copy(&mut decryptor, &mut plaintext)
                .expect("Encrypted memory modified or corrupted");
            let plaintext: Protected = plaintext.into();
            fun(&plaintext)
        }
    }
}

/// Time-constant comparison.
pub fn secure_cmp(a: &[u8], b: &[u8]) -> Ordering {
    let ord1 = a.len().cmp(&b.len());
    let ord2 = unsafe {
        memsec::memcmp(a.as_ptr(), b.as_ptr(), min(a.len(), b.len()))
    };
    let ord2 = match ord2 {
        0 => Ordering::Equal,
        a if a < 0 => Ordering::Less,
        a if a > 0 => Ordering::Greater,
        _ => unreachable!(),
    };

    if ord1 == Ordering::Equal { ord2 } else { ord1 }
}