1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//! Cryptographic primitives.

use std::io::Read;
use std::ops::{Deref, DerefMut};
use std::fmt;

use buffered_reader::BufferedReader;

use crate::types::HashAlgorithm;
use crate::Result;

pub(crate) mod aead;
mod asymmetric;
pub use self::asymmetric::{Signer, Decryptor, KeyPair};
mod backend;
pub use backend::random;
pub(crate) mod ecdh;
pub mod hash;
mod keygrip;
pub use self::keygrip::Keygrip;
pub mod mem;
pub mod mpi;
mod s2k;
pub use s2k::S2K;
pub mod sexp;
pub(crate) mod symmetric;

/// Holds a session key.
///
/// The session key is cleared when dropped.
#[derive(Clone, PartialEq, Eq)]
pub struct SessionKey(mem::Protected);

impl SessionKey {
    /// Creates a new session key.
    pub fn new(size: usize) -> Self {
        let mut sk: mem::Protected = vec![0; size].into();
        random(&mut sk);
        Self(sk)
    }
}

impl Deref for SessionKey {
    type Target = [u8];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl AsRef<[u8]> for SessionKey {
    fn as_ref(&self) -> &[u8] {
        &self.0
    }
}

impl DerefMut for SessionKey {
    fn deref_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl AsMut<[u8]> for SessionKey {
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl From<mem::Protected> for SessionKey {
    fn from(v: mem::Protected) -> Self {
        SessionKey(v)
    }
}

impl From<Vec<u8>> for SessionKey {
    fn from(v: Vec<u8>) -> Self {
        SessionKey(v.into())
    }
}

impl From<Box<[u8]>> for SessionKey {
    fn from(v: Box<[u8]>) -> Self {
        SessionKey(v.into())
    }
}

impl From<&[u8]> for SessionKey {
    fn from(v: &[u8]) -> Self {
        Vec::from(v).into()
    }
}

impl fmt::Debug for SessionKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "SessionKey ({:?})", self.0)
    }
}

/// Holds a password.
///
/// The password is encrypted in memory and only decrypted on demand.
/// See [`mem::Encrypted`] for details.
///
///  [`mem::Encrypted`]: mem/struct.Encrypted.html
#[derive(Clone, PartialEq, Eq)]
pub struct Password(mem::Encrypted);

impl From<Vec<u8>> for Password {
    fn from(v: Vec<u8>) -> Self {
        Password(mem::Encrypted::new(v.into()))
    }
}

impl From<Box<[u8]>> for Password {
    fn from(v: Box<[u8]>) -> Self {
        Password(mem::Encrypted::new(v.into()))
    }
}

impl From<String> for Password {
    fn from(v: String) -> Self {
        v.into_bytes().into()
    }
}

impl<'a> From<&'a str> for Password {
    fn from(v: &'a str) -> Self {
        v.to_owned().into()
    }
}

impl From<&[u8]> for Password {
    fn from(v: &[u8]) -> Self {
        Vec::from(v).into()
    }
}

impl fmt::Debug for Password {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if cfg!(debug_assertions) {
            self.map(|p| write!(f, "Password({:?})", p))
        } else {
            f.write_str("Password(<Encrypted>)")
        }
    }
}

impl Password {
    /// Maps the given function over the password.
    pub fn map<F, T>(&self, fun: F) -> T
        where F: FnMut(&mem::Protected) -> T
    {
        self.0.map(fun)
    }
}


/// Hashes the given reader.
///
/// This can be used to verify detached signatures.  For a more
/// convenient method, see [`DetachedVerifier`].
///
///  [`DetachedVerifier`]: ../parse/stream/struct.DetachedVerifier.html
pub fn hash_reader<R: Read>(reader: R, algos: &[HashAlgorithm])
    -> Result<Vec<hash::Context>>
{
    let reader
        = buffered_reader::Generic::with_cookie(
            reader, None, Default::default());
    hash_buffered_reader(reader, algos)
}

/// Hashes the given buffered reader.
///
/// This can be used to verify detached signatures.  For a more
/// convenient method, see [`DetachedVerifier`].
///
///  [`DetachedVerifier`]: ../parse/stream/struct.DetachedVerifier.html
pub(crate) fn hash_buffered_reader<R>(reader: R, algos: &[HashAlgorithm])
    -> Result<Vec<hash::Context>>
    where R: BufferedReader<crate::parse::Cookie>,
{
    use std::mem;

    use crate::parse::HashedReader;
    use crate::parse::HashesFor;

    let mut reader
        = HashedReader::new(reader, HashesFor::Signature, algos.to_vec());

    // Hash all of the data.
    reader.drop_eof()?;

    let hashes =
        mem::replace(&mut reader.cookie_mut().sig_group_mut().hashes,
                     Default::default());
    Ok(hashes)
}


#[test]
fn hash_reader_test() {
    use std::collections::HashMap;

    let expected: HashMap<HashAlgorithm, &str> = [
        (HashAlgorithm::SHA1, "7945E3DA269C25C04F9EF435A5C0F25D9662C771"),
        (HashAlgorithm::SHA512, "DDE60DB05C3958AF1E576CD006A7F3D2C343DD8C8DECE789A15D148DF90E6E0D1454DE734F8343502CA93759F22C8F6221BE35B6BDE9728BD12D289122437CB1"),
    ].iter().cloned().collect();

    let result =
        hash_reader(std::io::Cursor::new(crate::tests::manifesto()),
                    &expected.keys().cloned().collect::<Vec<HashAlgorithm>>())
        .unwrap();

    for mut hash in result.into_iter() {
        let algo = hash.algo();
        let mut digest = vec![0u8; hash.digest_size()];
        hash.digest(&mut digest);

        assert_eq!(*expected.get(&algo).unwrap(),
                   &crate::fmt::to_hex(&digest[..], false));
    }
}