1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
use std::convert::TryFrom;
use std::cmp;
use std::cmp::Ordering;
use std::borrow::Borrow;

use crate::{
    Error,
    Fingerprint,
    KeyID,
    Result,
};

/// Enum representing an identifier for certificates and keys.
///
/// A `KeyHandle` contains either a [`Fingerprint`] or a [`KeyID`].
/// This is needed because signatures can reference their issuer
/// either by `Fingerprint` or by `KeyID`.
///
/// Currently, sequoia supports *version 4* fingerprints and Key ID
/// only.  *Version 3* fingerprints and Key ID were deprecated by [RFC
/// 4880] in 2007.
///
/// A *v4* fingerprint is, essentially, a 20-byte SHA-1 hash over the
/// key's public key packet.  A *v4* Key ID is defined as the
/// fingerprint's lower 8 bytes.
///
/// For the exact definition, see [Section 12.2 of RFC 4880].
///
/// Both fingerprint and Key ID are used to identify a key, e.g., the
/// issuer of a signature.
///
///   [RFC 4880]: https://tools.ietf.org/html/rfc4880
///   [Section 12.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-12.2
///   [`Fingerprint`]: ./enum.Fingerprint.html
///   [`KeyID`]: ./enum.KeyID.html
///
/// # Examples
///
/// ```rust
/// # fn main() -> sequoia_openpgp::Result<()> {
/// # use sequoia_openpgp as openpgp;
/// use openpgp::KeyHandle;
/// use openpgp::Packet;
/// use openpgp::parse::Parse;
///
/// let p = Packet::from_bytes(
///     "-----BEGIN PGP SIGNATURE-----
/// #
/// #    wsBzBAABCgAdFiEEwD+mQRsDrhJXZGEYciO1ZnjgJSgFAlnclx8ACgkQciO1Znjg
/// #    JShldAf+NBvUTVPnVPhYM4KihWOUlup8lbD6g1IduSM5rpsGvOVb+uKF6ik+GOBB
/// #    RlMT4s183r3teFxiTkDx2pRhUz0MnOMPfbXovjF6Y93fKCOxCQWLBa0ukjNmE+ax
/// #    gu9nZ3XXDGXZW22iGE52uVjPGSfuLfqvdMy5bKHn8xow/kepuGHZwy8yn7uFv7sl
/// #    LnOBUz1FKA7iRl457XKPUhw5K7BnfRW/I2BRlnrwTDkjfXaJZC+bUTIJvm682Bvt
/// #    ZNn8zc0JucyEkuL9WXYNuZg0znDE3T7D/6+tzfEdSf706unsXFXWHf83vL2eHCcw
/// #    qhImm1lmcC+agFtWQ6/qD923LR9xmg==
/// #    =htNu
/// #    -----END PGP SIGNATURE-----" /* docstring trickery ahead:
///      // ...
///      -----END PGP SIGNATURE-----")?;
/// #    */)?;
/// if let Packet::Signature(sig) = p {
///     let issuers = sig.get_issuers();
///     assert_eq!(issuers.len(), 2);
///     assert_eq!(&issuers[0],
///                &KeyHandle::Fingerprint(
///                    "C03F A641 1B03 AE12 5764  6118 7223 B566 78E0 2528"
///                        .parse()?));
///     assert_eq!(&issuers[1],
///                &KeyHandle::KeyID("7223 B566 78E0 2528".parse()?));
/// } else {
///     unreachable!("It's a signature!");
/// }
/// # Ok(()) }
/// ```
#[derive(Debug, Clone)]
pub enum KeyHandle {
    /// A Fingerprint.
    Fingerprint(Fingerprint),
    /// A KeyID.
    KeyID(KeyID),
}

impl std::fmt::Display for KeyHandle {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            KeyHandle::Fingerprint(v) => v.fmt(f),
            KeyHandle::KeyID(v) => v.fmt(f),
        }
    }
}

impl std::fmt::UpperHex for KeyHandle {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match &self {
            KeyHandle::Fingerprint(ref fpr) => write!(f, "{:X}", fpr),
            KeyHandle::KeyID(ref keyid) => write!(f, "{:X}", keyid),
        }
    }
}

impl std::fmt::LowerHex for KeyHandle {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match &self {
            KeyHandle::Fingerprint(ref fpr) => write!(f, "{:x}", fpr),
            KeyHandle::KeyID(ref keyid) => write!(f, "{:x}", keyid),
        }
    }
}

impl From<KeyID> for KeyHandle {
    fn from(i: KeyID) -> Self {
        KeyHandle::KeyID(i)
    }
}

impl From<&KeyID> for KeyHandle {
    fn from(i: &KeyID) -> Self {
        KeyHandle::KeyID(i.clone())
    }
}

impl From<KeyHandle> for KeyID {
    fn from(i: KeyHandle) -> Self {
        match i {
            KeyHandle::Fingerprint(i) => i.into(),
            KeyHandle::KeyID(i) => i,
        }
    }
}

impl From<&KeyHandle> for KeyID {
    fn from(i: &KeyHandle) -> Self {
        match i {
            KeyHandle::Fingerprint(i) => i.clone().into(),
            KeyHandle::KeyID(i) => i.clone(),
        }
    }
}

impl From<Fingerprint> for KeyHandle {
    fn from(i: Fingerprint) -> Self {
        KeyHandle::Fingerprint(i)
    }
}

impl From<&Fingerprint> for KeyHandle {
    fn from(i: &Fingerprint) -> Self {
        KeyHandle::Fingerprint(i.clone())
    }
}

impl TryFrom<KeyHandle> for Fingerprint {
    type Error = anyhow::Error;
    fn try_from(i: KeyHandle) -> Result<Self> {
        match i {
            KeyHandle::Fingerprint(i) => Ok(i),
            KeyHandle::KeyID(i) => Err(Error::InvalidOperation(
                format!("Cannot convert keyid {} to fingerprint", i)).into()),
        }
    }
}

impl TryFrom<&KeyHandle> for Fingerprint {
    type Error = anyhow::Error;
    fn try_from(i: &KeyHandle) -> Result<Self> {
        match i {
            KeyHandle::Fingerprint(i) => Ok(i.clone()),
            KeyHandle::KeyID(i) => Err(Error::InvalidOperation(
                format!("Cannot convert keyid {} to fingerprint", i)).into()),
        }
    }
}

impl PartialOrd for KeyHandle {
    fn partial_cmp(&self, other: &KeyHandle) -> Option<Ordering> {
        let a = self.as_bytes();
        let b = other.as_bytes();

        let l = cmp::min(a.len(), b.len());

        // Do a little endian comparison so that for v4 keys (where
        // the KeyID is a suffix of the Fingerprint) equivalent KeyIDs
        // and Fingerprints sort next to each other.
        for (a, b) in a[a.len()-l..].iter().zip(b[b.len()-l..].iter()) {
            let cmp = a.cmp(b);
            if cmp != Ordering::Equal {
                return Some(cmp);
            }
        }

        if a.len() == b.len() {
            Some(Ordering::Equal)
        } else {
            // One (a KeyID) is the suffix of the other (a
            // Fingerprint).
            None
        }
    }
}

impl PartialEq for KeyHandle {
    fn eq(&self, other: &Self) -> bool {
        self.partial_cmp(other) == Some(Ordering::Equal)
    }
}

impl KeyHandle {
    /// Returns the raw identifier as a byte slice.
    pub fn as_bytes(&self) -> &[u8] {
        match self {
            KeyHandle::Fingerprint(i) => i.as_bytes(),
            KeyHandle::KeyID(i) => i.as_bytes(),
        }
    }

    /// Returns whether `self` and `other` could be aliases of each
    /// other.
    ///
    /// `KeyHandle`'s `PartialEq` implementation cannot assert that a
    /// `Fingerprint` and a `KeyID` are equal, because distinct
    /// fingerprints may have the same `KeyID`, and `PartialEq` must
    /// be [transitive], i.e.,
    ///
    /// ```text
    /// a == b and b == c implies a == c.
    /// ```
    ///
    /// [transitive]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
    ///
    /// That is, if `fpr1` and `fpr2` are distinct fingerprints with the
    /// same key ID then:
    ///
    /// ```text
    /// fpr1 == keyid and fpr2 == keyid, but fpr1 != fpr2.
    /// ```
    ///
    /// In these cases (and only these cases) `KeyHandle`'s
    /// `PartialOrd` implementation returns `None` to correctly
    /// indicate that a comparison is not possible.
    ///
    /// This definition of equality makes searching for a given
    /// `KeyHandle` using `PartialEq` awkward.  This function fills
    /// that gap.  It answers the question: given two `KeyHandles`,
    /// could they be aliases?  That is, it implements the desired,
    /// non-transitive equality relation:
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # use openpgp::Fingerprint;
    /// # use openpgp::KeyID;
    /// # use openpgp::KeyHandle;
    /// #
    /// # let fpr1 : KeyHandle
    /// #     = "8F17 7771 18A3 3DDA 9BA4  8E62 AACB 3243 6300 52D9"
    /// #       .parse::<Fingerprint>().unwrap().into();
    /// #
    /// # let fpr2 : KeyHandle
    /// #     = "0123 4567 8901 2345 6789  0123 AACB 3243 6300 52D9"
    /// #       .parse::<Fingerprint>().unwrap().into();
    /// #
    /// # let keyid : KeyHandle = "AACB 3243 6300 52D9".parse::<KeyID>()
    /// #     .unwrap().into();
    /// #
    /// // fpr1 and fpr2 are different fingerprints with the same KeyID.
    /// assert!(! fpr1.eq(&fpr2));
    /// assert!(fpr1.aliases(&keyid));
    /// assert!(fpr2.aliases(&keyid));
    /// assert!(! fpr1.aliases(&fpr2));
    /// ```
    pub fn aliases<H>(&self, other: H) -> bool
        where H: Borrow<KeyHandle>
    {
        // This works, because the PartialOrd implementation only
        // returns None if one value is a fingerprint and the other is
        // a key id that matches the fingerprint's key id.
        self.partial_cmp(other.borrow()).unwrap_or(Ordering::Equal)
            == Ordering::Equal
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn upper_hex_formatting() {
        let handle = KeyHandle::Fingerprint(Fingerprint::V4([1, 2, 3, 4, 5, 6, 7,
            8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]));
        assert_eq!(format!("{:X}", handle), "0102030405060708090A0B0C0D0E0F1011121314");

        let handle = KeyHandle::Fingerprint(Fingerprint::Invalid(Box::new([10, 2, 3, 4])));
        assert_eq!(format!("{:X}", handle), "0A020304");

        let handle = KeyHandle::KeyID(KeyID::V4([10, 2, 3, 4, 5, 6, 7, 8]));
        assert_eq!(format!("{:X}", handle), "0A02030405060708");

        let handle = KeyHandle::KeyID(KeyID::Invalid(Box::new([10, 2])));
        assert_eq!(format!("{:X}", handle), "0A02");
    }

    #[test]
    fn lower_hex_formatting() {
        let handle = KeyHandle::Fingerprint(Fingerprint::V4([1, 2, 3, 4, 5, 6, 7,
            8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]));
        assert_eq!(format!("{:x}", handle), "0102030405060708090a0b0c0d0e0f1011121314");

        let handle = KeyHandle::Fingerprint(Fingerprint::Invalid(Box::new([10, 2, 3, 4])));
        assert_eq!(format!("{:x}", handle), "0a020304");

        let handle = KeyHandle::KeyID(KeyID::V4([10, 2, 3, 4, 5, 6, 7, 8]));
        assert_eq!(format!("{:x}", handle), "0a02030405060708");

        let handle = KeyHandle::KeyID(KeyID::Invalid(Box::new([10, 2])));
        assert_eq!(format!("{:x}", handle), "0a02");
    }

    #[test]
    fn key_handle_is_send_and_sync() {
        fn f<T: Send + Sync>(_: T) {}
        f(KeyHandle::from("0123 4567 89AB CDEF 0123 4567 89AB CDEF 0123 4567"
                          .parse::<Fingerprint>().unwrap()));
    }
}