logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
//! Signature-related functionality.
//!
//! Signatures are one of the central data structures in OpenPGP.
//! They are used to protect the integrity of both structured
//! documents (e.g., timestamps) and unstructured documents (arbitrary
//! byte sequences) as well as cryptographic data structures.
//!
//! The use of signatures to protect cryptographic data structures is
//! central to making it easy to change an OpenPGP certificate.
//! Consider how a certificate is initially authenticated.  A user,
//! say Alice, securely communicates her certificate's fingerprint to
//! another user, say Bob.  Alice might do this by personally handing
//! Bob a business card with her fingerprint on it.  When Bob is in
//! front of his computer, he may then record that Alice uses the
//! specified key.  Technically, the fingerprint that he used only
//! identifies the primary key: a fingerprint is the hash of the
//! primary key; it does not say anything about any of the rest of the
//! certificate---the subkeys, the User IDs, and the User Attributes.
//! But, because these components are signed by the primary key, we
//! know that the controller of the key intended that they be
//! associated with the certificate.  This mechanism makes it not only
//! possible to add and revoke components, but also to change
//! meta-data, such as a key's expiration time.  If the fingerprint
//! were instead computed over the whole OpenPGP certificate, then
//! changing the certificate would result in a new fingerprint.  In
//! that case, the fingerprint could not be used as a long-term,
//! unique, and stable identifier.
//!
//! Signatures are described in [Section 5.2 of RFC 4880].
//!
//! # Data Types
//!
//! The main signature-related data type is the [`Signature`] enum.
//! This enum abstracts away the differences between the signature
//! formats (the deprecated [version 3], the current [version 4], and
//! the proposed [version 5] formats).  Nevertheless some
//! functionality remains format specific.  For instance, version 4
//! signatures introduced support for storing arbitrary key-value
//! pairs (so-called [notations]).
//!
//! This version of Sequoia only supports version 4 signatures
//! ([`Signature4`]).  However, future versions may include limited
//! support for version 3 signatures to allow working with archived
//! messages, and we intend to add support for version 5 signatures
//! once the new version of the specification has been finalized.
//!
//! When signing a document, a `Signature` is typically created
//! indirectly by the [streaming `Signer`].  Similarly, a `Signature`
//! packet is created as a side effect of parsing a signed message
//! using the [`PacketParser`].
//!
//! The [`SignatureBuilder`] can be used to create a binding
//! signature, a certification, etc.  The motivation for having a
//! separate data structure for creating signatures is that it
//! decreases the chance that a half-constructed signature is
//! accidentally exported.  When modifying an existing signature, you
//! can use, for instance, `SignatureBuilder::from` to convert a
//! `Signature` into a `SignatureBuilder`:
//!
//! ```
//! use sequoia_openpgp as openpgp;
//! use openpgp::policy::StandardPolicy;
//! # use openpgp::cert::prelude::*;
//! # use openpgp::packet::prelude::*;
//!
//! # fn main() -> openpgp::Result<()> {
//! let p = &StandardPolicy::new();
//!
//! # // Generate a new certificate.  It has secret key material.
//! # let (cert, _) = CertBuilder::new()
//! #     .generate()?;
//! #
//! // Create a new direct key signature using the current one as a template.
//! let pk = cert.with_policy(p, None)?.primary_key();
//! let sig = pk.direct_key_signature()?;
//! let builder: SignatureBuilder = sig.clone().into();
//! # Ok(())
//! # }
//! ```
//!
//! For version 4 signatures, attributes are set using so-called
//! subpackets.  Subpackets can be stored in two places: either in the
//! so-called hashed area or in the so-called unhashed area.  Whereas
//! the hashed area's integrity is protected by the signature, the
//! unhashed area is not.  Because an attacker can modify the unhashed
//! area without detection, the unhashed area should only be used for
//! storing self-authenticating data, e.g., the issuer, or a back
//! signature.  It is also sometimes used for [hints].
//! [`Signature::normalize`] removes unexpected subpackets from the
//! unhashed area.  However, due to a lack of context, it does not
//! validate the remaining subpackets.
//!
//! In Sequoia, each subpacket area is represented by a
//! [`SubpacketArea`] data structure.  The two subpacket areas are
//! unified by the [`SubpacketAreas`] data structure, which implements
//! a reasonable policy for looking up subpackets.  In particular, it
//! prefers subpackets from the hashed subpacket area, and only
//! consults the unhashed subpacket area for certain packets.  See
//! [its documentation] for details.
//!
//! [Section 5.2 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.2
//! [`Signature`]: super::Signature
//! [version 3]: https://tools.ietf.org/html/rfc1991#section-5.2.2
//! [version 4]: https://tools.ietf.org/html/rfc4880#section-5.2.3
//! [version 5]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#name-version-4-and-5-signature-p
//! [notations]: https://tools.ietf.org/html/rfc4880#section-5.2.3.16
//! [streaming `Signer`]: crate::serialize::stream::Signer
//! [`PacketParser`]: crate::parse::PacketParser
//! [hints]: https://tools.ietf.org/html/rfc4880#section-5.13
//! [`Signature::normalize`]: super::Signature::normalize()
//! [`SubpacketArea`]: subpacket::SubpacketArea
//! [`SubpacketAreas`]: subpacket::SubpacketAreas
//! [its documentation]: subpacket::SubpacketAreas

use std::cmp::Ordering;
use std::convert::TryFrom;
use std::fmt;
use std::hash::Hasher;
use std::ops::{Deref, DerefMut};
use std::time::SystemTime;

#[cfg(test)]
use quickcheck::{Arbitrary, Gen};

use crate::Error;
use crate::Result;
use crate::crypto::{
    mpi,
    hash::{self, Hash, Digest},
    Signer,
};
use crate::KeyID;
use crate::KeyHandle;
use crate::HashAlgorithm;
use crate::PublicKeyAlgorithm;
use crate::SignatureType;
use crate::packet::Signature;
use crate::packet::{
    key,
    Key,
};
use crate::packet::UserID;
use crate::packet::UserAttribute;
use crate::Packet;
use crate::packet;
use crate::packet::signature::subpacket::{
    Subpacket,
    SubpacketArea,
    SubpacketAreas,
    SubpacketTag,
    SubpacketValue,
};
use crate::types::Timestamp;

#[cfg(test)]
/// Like quickcheck::Arbitrary, but bounded.
trait ArbitraryBounded {
    /// Generates an arbitrary value, but only recurses if `depth >
    /// 0`.
    fn arbitrary_bounded(g: &mut Gen, depth: usize) -> Self;
}

#[cfg(test)]
/// Default depth when implementing Arbitrary using ArbitraryBounded.
const DEFAULT_ARBITRARY_DEPTH: usize = 2;

#[cfg(test)]
macro_rules! impl_arbitrary_with_bound {
    ($typ:path) => {
        impl Arbitrary for $typ {
            fn arbitrary(g: &mut Gen) -> Self {
                Self::arbitrary_bounded(
                    g,
                    crate::packet::signature::DEFAULT_ARBITRARY_DEPTH)
            }
        }
    }
}

pub mod subpacket;

/// How many seconds to backdate signatures.
///
/// When creating certificates (more specifically, binding
/// signatures), and when updating binding signatures (creating
/// signatures from templates), we backdate the signatures by this
/// amount if no creation time is explicitly given.  Backdating the
/// certificate by a minute has the advantage that the certificate can
/// immediately be customized:
///
/// In order to reliably override a binding signature, the
/// overriding binding signature must be newer than the existing
/// signature.  If, however, the existing signature is created
/// `now`, any newer signature must have a future creation time,
/// and is considered invalid by Sequoia.  To avoid this, we
/// backdate certificate creation times (and hence binding
/// signature creation times), so that there is "space" between
/// the creation time and now for signature updates.
pub(crate) const SIG_BACKDATE_BY: u64 = 60;

/// The data stored in a `Signature` packet.
///
/// This data structure contains exactly those fields that appear in a
/// [`Signature` packet].  It is used by both the [`Signature4`] and
/// the [`SignatureBuilder`] data structures, which include other
/// auxiliary information.  This data structure is public so that
/// `Signature4` and `SignatureBuilder` can deref to it.
///
/// A `SignatureField` derefs to a [`SubpacketAreas`].
///
/// [`Signature`]: https://tools.ietf.org/html/rfc4880#section-5.2
/// [`SubpacketAreas`]: subpacket::SubpacketAreas
#[derive(Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct SignatureFields {
    /// Version of the signature packet. Must be 4.
    version: u8,
    /// Type of signature.
    typ: SignatureType,
    /// Public-key algorithm used for this signature.
    pk_algo: PublicKeyAlgorithm,
    /// Hash algorithm used to compute the signature.
    hash_algo: HashAlgorithm,
    /// Subpackets.
    subpackets: SubpacketAreas,
}
assert_send_and_sync!(SignatureFields);

#[cfg(test)]
impl ArbitraryBounded for SignatureFields {
    fn arbitrary_bounded(g: &mut Gen, depth: usize) -> Self {
        SignatureFields {
            // XXX: Make this more interesting once we dig other
            // versions.
            version: 4,
            typ: Arbitrary::arbitrary(g),
            pk_algo: PublicKeyAlgorithm::arbitrary_for_signing(g),
            hash_algo: Arbitrary::arbitrary(g),
            subpackets: ArbitraryBounded::arbitrary_bounded(g, depth),
        }
    }
}

#[cfg(test)]
impl_arbitrary_with_bound!(SignatureFields);

impl Deref for SignatureFields {
    type Target = SubpacketAreas;

    fn deref(&self) -> &Self::Target {
        &self.subpackets
    }
}

impl DerefMut for SignatureFields {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.subpackets
    }
}

impl SignatureFields {
    /// Gets the version.
    pub fn version(&self) -> u8 {
        self.version
    }

    /// Gets the signature type.
    ///
    /// This function is called `typ` and not `type`, because `type`
    /// is a reserved word.
    pub fn typ(&self) -> SignatureType {
        self.typ
    }

    /// Gets the public key algorithm.
    ///
    /// This is `pub(crate)`, because it shouldn't be exported by
    /// `SignatureBuilder` where it is only set at the end.
    pub(crate) fn pk_algo(&self) -> PublicKeyAlgorithm {
        self.pk_algo
    }

    /// Gets the hash algorithm.
    pub fn hash_algo(&self) -> HashAlgorithm {
        self.hash_algo
    }
}

/// A Signature builder.
///
/// The `SignatureBuilder` is used to create [`Signature`]s.  Although
/// it can be used to generate a signature over a document (using
/// [`SignatureBuilder::sign_message`]), it is usually better to use
/// the [streaming `Signer`] for that.
///
///   [`Signature`]: super::Signature
///   [streaming `Signer`]: crate::serialize::stream::Signer
///   [`SignatureBuilder::sign_message`]: SignatureBuilder::sign_message()
///
/// Oftentimes, you won't want to create a new signature from scratch,
/// but modify a copy of an existing signature.  This is
/// straightforward to do since `SignatureBuilder` implements [`From`]
/// for Signature.
///
///   [`From`]: std::convert::From
///
/// When converting a `Signature` to a `SignatureBuilder`, the hash
/// algorithm is reset to the default hash algorithm
/// (`HashAlgorithm::Default()`).  This ensures that a recommended
/// hash algorithm is used even when an old signature is used as a
/// template, which is often the case when updating self signatures,
/// and binding signatures.
///
/// According to [Section 5.2.3.4 of RFC 4880], `Signatures` must
/// include a [`Signature Creation Time`] subpacket.  Since this
/// should usually be set to the current time, and is easy to forget
/// to update, we remove any `Signature Creation Time` subpackets
/// from both the hashed subpacket area and the unhashed subpacket
/// area when converting a `Signature` to a `SignatureBuilder`, and
/// when the `SignatureBuilder` is finalized, we automatically insert
/// a `Signature Creation Time` subpacket into the hashed subpacket
/// area unless the `Signature Creation Time` subpacket has been set
/// using the [`set_signature_creation_time`] method or preserved
/// using the [`preserve_signature_creation_time`] method or
/// suppressed using the [`suppress_signature_creation_time`] method.
///
/// If the `SignatureBuilder` has been created from scratch, the
/// current time is used as signature creation time.  If it has been
/// created from a template, we make sure that the generated signature
/// is newer.  If that is not possible (i.e. the generated signature
/// would have a future creation time), the signing operation fails.
/// This ensures that binding signatures can be updated by deriving a
/// `SignatureBuilder` from the existing binding.  To disable this,
/// explicitly set a signature creation time, or preserve the original
/// one, or suppress the insertion of a timestamp.
///
///   [Section 5.2.3.4 of RFC 4880]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
///   [`suppress_signature_creation_time`]: SignatureBuilder::suppress_signature_creation_time()
///
/// Similarly, most OpenPGP implementations cannot verify a signature
/// if neither the [`Issuer`] subpacket nor the [`Issuer Fingerprint`]
/// subpacket has been correctly set.  To avoid subtle bugs due to the
/// use of a stale `Issuer` subpacket or a stale `Issuer Fingerprint`
/// subpacket, we remove any `Issuer` subpackets, and `Issuer
/// Fingerprint` subpackets from both the hashed and unhashed areas
/// when converting a `Signature` to a `SigantureBuilder`.  Since the
/// [`Signer`] passed to the finalization routine contains the
/// required information, we also automatically add appropriate
/// `Issuer` and `Issuer Fingerprint` subpackets to the hashed
/// subpacket area when the `SignatureBuilder` is finalized unless an
/// `Issuer` subpacket or an `IssuerFingerprint` subpacket has been
/// added to either of the subpacket areas (which can be done using
/// the [`set_issuer`] method and the [`set_issuer_fingerprint`]
/// method, respectively).
///
///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
///   [`Signer`]: super::super::crypto::Signer
///   [`set_issuer`]: SignatureBuilder::set_issuer()
///   [`set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
///
/// To finalize the builder, call [`sign_hash`], [`sign_message`],
/// [`sign_direct_key`], [`sign_subkey_binding`],
/// [`sign_primary_key_binding`], [`sign_userid_binding`],
/// [`sign_user_attribute_binding`], [`sign_standalone`], or
/// [`sign_timestamp`], as appropriate.  These functions turn the
/// `SignatureBuilder` into a valid `Signature`.
///
///   [`sign_hash`]: SignatureBuilder::sign_hash()
///   [`sign_message`]: SignatureBuilder::sign_message()
///   [`sign_direct_key`]: SignatureBuilder::sign_direct_key()
///   [`sign_subkey_binding`]: SignatureBuilder::sign_subkey_binding()
///   [`sign_primary_key_binding`]: SignatureBuilder::sign_primary_key_binding()
///   [`sign_userid_binding`]: SignatureBuilder::sign_userid_binding()
///   [`sign_user_attribute_binding`]: SignatureBuilder::sign_user_attribute_binding()
///   [`sign_standalone`]: SignatureBuilder::sign_standalone()
///   [`sign_timestamp`]: SignatureBuilder::sign_timestamp()
///
/// This structure `Deref`s to its containing [`SignatureFields`]
/// structure, which in turn `Deref`s to its subpacket areas
/// (a [`SubpacketAreas`]).
///
///   [`SubpacketAreas`]: subpacket::SubpacketAreas
///
/// # Examples
///
/// Update a certificate's feature set by updating the `Features`
/// subpacket on any direct key signature, and any User ID binding
/// signatures.  See the [`Preferences`] trait for how preferences
/// like these are looked up.
///
/// [`Preferences`]: crate::cert::Preferences
///
/// ```
/// use sequoia_openpgp as openpgp;
/// use openpgp::cert::prelude::*;
/// use openpgp::packet::prelude::*;
/// use openpgp::packet::signature::subpacket::{Subpacket, SubpacketValue};
/// use openpgp::policy::StandardPolicy;
/// use openpgp::types::Features;
///
/// # fn main() -> openpgp::Result<()> {
/// let p = &StandardPolicy::new();
///
/// let (cert, _) = CertBuilder::new().add_userid("Alice").generate()?;
///
/// // Derive a signer (the primary key is always certification capable).
/// let pk = cert.primary_key().key();
/// let mut signer = pk.clone().parts_into_secret()?.into_keypair()?;
///
/// let mut sigs = Vec::new();
///
/// let vc = cert.with_policy(p, None)?;
///
/// if let Ok(sig) = vc.direct_key_signature() {
///     sigs.push(SignatureBuilder::from(sig.clone())
///         .modify_hashed_area(|mut a| {
///             a.replace(Subpacket::new(
///                 SubpacketValue::Features(Features::sequoia().set(10)),
///                 false)?)?;
///             Ok(a)
///         })?
///         // Update the direct key signature.
///         .sign_direct_key(&mut signer, None)?);
/// }
///
/// for ua in vc.userids() {
///     sigs.push(SignatureBuilder::from(ua.binding_signature().clone())
///         .modify_hashed_area(|mut a| {
///             a.replace(Subpacket::new(
///                 SubpacketValue::Features(Features::sequoia().set(10)),
///                 false)?)?;
///             Ok(a)
///         })?
///         // Update the binding signature.
///         .sign_userid_binding(&mut signer, pk, ua.userid())?);
/// }
///
/// // Merge in the new signatures.
/// let cert = cert.insert_packets(sigs.into_iter().map(Packet::from))?;
/// # assert_eq!(cert.bad_signatures().count(), 0);
/// # Ok(())
/// # }
/// ```
// IMPORTANT: If you add fields to this struct, you need to explicitly
// IMPORTANT: implement PartialEq, Eq, and Hash.
#[derive(Clone, Hash, PartialEq, Eq)]
pub struct SignatureBuilder {
    reference_time: Option<SystemTime>,
    overrode_creation_time: bool,
    original_creation_time: Option<SystemTime>,
    fields: SignatureFields,
}
assert_send_and_sync!(SignatureBuilder);

impl Deref for SignatureBuilder {
    type Target = SignatureFields;

    fn deref(&self) -> &Self::Target {
        &self.fields
    }
}

impl DerefMut for SignatureBuilder {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.fields
    }
}

impl SignatureBuilder {
    /// Returns a new `SignatureBuilder` object.
    pub fn new(typ: SignatureType) ->  Self {
        SignatureBuilder {
            reference_time: None,
            overrode_creation_time: false,
            original_creation_time: None,
            fields: SignatureFields {
                version: 4,
                typ,
                pk_algo: PublicKeyAlgorithm::Unknown(0),
                hash_algo: HashAlgorithm::default(),
                subpackets: SubpacketAreas::default(),
            }
        }
    }

    /// Sets the signature type.
    pub fn set_type(mut self, t: SignatureType) -> Self {
        self.typ = t;
        self
    }

    /// Sets the hash algorithm.
    pub fn set_hash_algo(mut self, h: HashAlgorithm) -> Self {
        self.hash_algo = h;
        self
    }

    /// Generates a standalone signature.
    ///
    /// A [Standalone Signature] ([`SignatureType::Standalone`]) is a
    /// self-contained signature, which is only over the signature
    /// packet.
    ///
    ///   [Standalone Signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///   [`SignatureType::Standalone`]: crate::types::SignatureType::Standalone
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is [`SignatureType::Standalone`] or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`SignatureType::Timestamp`]: crate::types::SignatureType::Timestamp
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// # Examples
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SignatureType;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().add_signing_subkey().generate()?;
    ///
    /// // Get a usable (alive, non-revoked) signing key.
    /// let key : &Key<_, _> = cert
    ///     .keys().with_policy(p, None)
    ///     .for_signing().alive().revoked(false).nth(0).unwrap().key();
    /// // Derive a signer.
    /// let mut signer = key.clone().parts_into_secret()?.into_keypair()?;
    ///
    /// let mut sig = SignatureBuilder::new(SignatureType::Standalone)
    ///     .sign_standalone(&mut signer)?;
    ///
    /// // Verify it.
    /// sig.verify_standalone(signer.public())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_standalone(mut self, signer: &mut dyn Signer)
                           -> Result<Signature>
    {
        match self.typ {
            SignatureType::Standalone => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        self = self.pre_sign(signer)?;

        let mut hash = self.hash_algo().context()?;
        self.hash_standalone(&mut hash);
        self.sign(signer, hash.into_digest()?)
    }

    /// Generates a Timestamp Signature.
    ///
    /// Like a [Standalone Signature] (created using
    /// [`SignatureBuilder::sign_standalone`]), a [Timestamp
    /// Signature] is a self-contained signature, but its emphasis in
    /// on the contained timestamp, specifically, the timestamp stored
    /// in the [`Signature Creation Time`] subpacket.  This type of
    /// signature is primarily used by [timestamping services].  To
    /// timestamp a signature, you can include either a [Signature
    /// Target subpacket] (set using
    /// [`SignatureBuilder::set_signature_target`]), or an [Embedded
    /// Signature] (set using
    /// [`SignatureBuilder::set_embedded_signature`]) in the hashed
    /// area.
    ///
    ///
    ///   [Standalone Signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///   [`SignatureBuilder::sign_standalone`]: SignatureBuilder::sign_standalone()
    ///   [Timestamp Signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [timestamping services]: https://en.wikipedia.org/wiki/Trusted_timestamping
    ///   [Signature Target subpacket]: https://tools.ietf.org/html/rfc4880#section-5.2.3.25
    ///   [`SignatureBuilder::set_signature_target`]: SignatureBuilder::set_signature_target()
    ///   [Embedded Signature]: https://tools.ietf.org/html/rfc4880#section-5.2.3.26
    ///   [`SignatureBuilder::set_embedded_signature`]: SignatureBuilder::set_embedded_signature()
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is [`SignatureType::Timestamp`] or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`SignatureType::Timestamp`]: crate::types::SignatureType::Timestamp
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// # Examples
    ///
    /// Create a timestamp signature:
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SignatureType;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().add_signing_subkey().generate()?;
    ///
    /// // Get a usable (alive, non-revoked) signing key.
    /// let key : &Key<_, _> = cert
    ///     .keys().with_policy(p, None)
    ///     .for_signing().alive().revoked(false).nth(0).unwrap().key();
    /// // Derive a signer.
    /// let mut signer = key.clone().parts_into_secret()?.into_keypair()?;
    ///
    /// let mut sig = SignatureBuilder::new(SignatureType::Timestamp)
    ///     .sign_timestamp(&mut signer)?;
    ///
    /// // Verify it.
    /// sig.verify_timestamp(signer.public())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_timestamp(mut self, signer: &mut dyn Signer)
                          -> Result<Signature>
    {
        match self.typ {
            SignatureType::Timestamp => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        self = self.pre_sign(signer)?;

        let mut hash = self.hash_algo().context()?;
        self.hash_timestamp(&mut hash);
        self.sign(signer, hash.into_digest()?)
    }

    /// Generates a Direct Key Signature.
    ///
    /// A [Direct Key Signature] is a signature over the primary key.
    /// It is primarily used to hold fallback [preferences].  For
    /// instance, when addressing the Certificate by a User ID, the
    /// OpenPGP implementation is supposed to look for preferences
    /// like the [Preferred Symmetric Algorithms] on the User ID, and
    /// only if there is no such packet, look on the direct key
    /// signature.
    ///
    /// This function is also used to create a [Key Revocation
    /// Signature], which revokes the certificate.
    ///
    ///   [preferences]: crate::cert::Preferences
    ///   [Direct Key Signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///   [Preferred Symmetric Algorithms]: https://tools.ietf.org/html/rfc4880#section-5.2.3.7
    ///   [Key Revocation Signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is [`SignatureType::DirectKey`],
    /// [`SignatureType::KeyRevocation`], or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`SignatureType::DirectKey`]: crate::types::SignatureType::DirectKey
    ///   [`SignatureType::KeyRevocation`]: crate::types::SignatureType::KeyRevocation
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// If `pk` is set to `None` the signature will be computed over the public key
    /// retrieved from the `signer` parameter, i.e. a self-signature will be created.
    ///  To create a third-party-signature provide an explicit public key as the
    /// `pk` parameter.
    ///
    /// # Examples
    ///
    /// Set the default value for the [Preferred Symmetric Algorithms
    /// subpacket]:
    ///
    /// [Preferred Symmetric Algorithms subpacket]: SignatureBuilder::set_preferred_symmetric_algorithms()
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SignatureType;
    /// use openpgp::types::SymmetricAlgorithm;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().add_signing_subkey().generate()?;
    ///
    /// // Get a usable (alive, non-revoked) certification key.
    /// let key : &Key<_, _> = cert
    ///     .keys().with_policy(p, None)
    ///     .for_certification().alive().revoked(false).nth(0).unwrap().key();
    /// // Derive a signer.
    /// let mut signer = key.clone().parts_into_secret()?.into_keypair()?;
    ///
    /// // A direct key signature is always over the primary key.
    /// let pk = cert.primary_key().key();
    ///
    /// // Modify the existing direct key signature.
    /// let mut sig = SignatureBuilder::from(
    ///         cert.with_policy(p, None)?.direct_key_signature()?.clone())
    ///     .set_preferred_symmetric_algorithms(
    ///         vec![ SymmetricAlgorithm::AES256,
    ///               SymmetricAlgorithm::AES128,
    ///         ])?
    ///     .sign_direct_key(&mut signer, None)?;
    ///
    /// // Verify it.
    /// sig.verify_direct_key(signer.public(), pk)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_direct_key<'a, PK>(mut self, signer: &mut dyn Signer,
                              pk: PK)
        -> Result<Signature>
    where PK: Into<Option<&'a Key<key::PublicParts, key::PrimaryRole>>>
    {
        match self.typ {
            SignatureType::DirectKey => (),
            SignatureType::KeyRevocation => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        self = self.pre_sign(signer)?;

        let mut hash = self.hash_algo().context()?;
        let pk = pk.into().unwrap_or_else(|| signer.public().role_as_primary());
        self.hash_direct_key(&mut hash, pk);

        self.sign(signer, hash.into_digest()?)
    }

    /// Generates a User ID binding signature.
    ///
    /// A User ID binding signature (a self signature) or a [User ID
    /// certification] (a third-party signature) is a signature over a
    /// `User ID` and a `Primary Key` made by a certification-capable
    /// key.  It asserts that the signer is convinced that the `User
    /// ID` should be associated with the `Certificate`, i.e., that
    /// the binding is authentic.
    ///
    ///   [User ID certification]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///
    /// OpenPGP has four types of `User ID` certifications.  They are
    /// intended to express the degree of the signer's conviction,
    /// i.e., how well the signer authenticated the binding.  In
    /// practice, the `Positive Certification` type is used for
    /// self-signatures, and the `Generic Certification` is used for
    /// third-party certifications; the other types are not normally
    /// used.
    ///
    /// This function is also used to create [Certification
    /// Revocations].
    ///
    ///   [Certification Revocations]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is [`GenericCertification`],
    /// [`PersonaCertification`], [`CasualCertification`],
    /// [`PositiveCertification`], [`CertificationRevocation`], or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`GenericCertification`]: crate::types::SignatureType::GenericCertification
    ///   [`PersonaCertification`]: crate::types::SignatureType::PersonaCertification
    ///   [`CasualCertification`]: crate::types::SignatureType::CasualCertification
    ///   [`PositiveCertification`]: crate::types::SignatureType::PositiveCertification
    ///   [`CertificationRevocation`]: crate::types::SignatureType::CertificationRevocation
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// If `pk` is set to `None` the signature will be computed over the public key
    /// retrieved from the `signer` parameter, i.e. a self-signature will be created.
    ///  To create a third-party-signature provide an explicit public key as the
    /// `pk` parameter.
    ///
    /// # Examples
    ///
    /// Set the [Preferred Symmetric Algorithms subpacket], which will
    /// be used when addressing the certificate via the associated
    /// User ID:
    ///
    /// [Preferred Symmetric Algorithms subpacket]: SignatureBuilder::set_preferred_symmetric_algorithms()
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SymmetricAlgorithm;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().add_userid("Alice").generate()?;
    ///
    /// // Get a usable (alive, non-revoked) certification key.
    /// let key : &Key<_, _> = cert
    ///     .keys().with_policy(p, None)
    ///     .for_certification().alive().revoked(false).nth(0).unwrap().key();
    /// // Derive a signer.
    /// let mut signer = key.clone().parts_into_secret()?.into_keypair()?;
    ///
    /// // Update the User ID's binding signature.
    /// let ua = cert.with_policy(p, None)?.userids().nth(0).unwrap();
    /// let mut new_sig = SignatureBuilder::from(
    ///         ua.binding_signature().clone())
    ///     .set_preferred_symmetric_algorithms(
    ///         vec![ SymmetricAlgorithm::AES256,
    ///               SymmetricAlgorithm::AES128,
    ///         ])?
    ///     .sign_userid_binding(&mut signer, None, ua.userid())?;
    ///
    /// // Verify it.
    /// let pk = cert.primary_key().key();
    ///
    /// new_sig.verify_userid_binding(signer.public(), pk, ua.userid())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_userid_binding<'a, PK>(mut self, signer: &mut dyn Signer,
                                  key: PK, userid: &UserID)
        -> Result<Signature>
        where PK: Into<Option<&'a Key<key::PublicParts, key::PrimaryRole>>>
    {
        match self.typ {
            SignatureType::GenericCertification => (),
            SignatureType::PersonaCertification => (),
            SignatureType::CasualCertification => (),
            SignatureType::PositiveCertification => (),
            SignatureType::CertificationRevocation => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        self = self.pre_sign(signer)?;

        let key = key.into().unwrap_or_else(|| signer.public().role_as_primary());

        let mut hash = self.hash_algo().context()?;
        self.hash_userid_binding(&mut hash, key, userid);
        self.sign(signer, hash.into_digest()?)
    }

    /// Generates a subkey binding signature.
    ///
    /// A [subkey binding signature] is a signature over the primary
    /// key and a subkey, which is made by the primary key.  It is an
    /// assertion by the certificate that the subkey really belongs to
    /// the certificate.  That is, it binds the subkey to the
    /// certificate.
    ///
    /// Note: this function does not create a back signature, which is
    /// needed by certification-capable, signing-capable, and
    /// authentication-capable subkeys.  A back signature can be
    /// created using [`SignatureBuilder::sign_primary_key_binding`].
    ///
    /// This function is also used to create subkey revocations.
    ///
    ///   [subkey binding signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///   [`SignatureBuilder::sign_primary_key_binding`]: SignatureBuilder::sign_primary_key_binding()
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is
    /// [`SignatureType::SubkeyBinding`], [`SignatureType::SubkeyRevocation`], or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`SignatureType::SubkeyBinding`]: crate::types::SignatureType::SubkeyBinding
    ///   [`SignatureType::SubkeyRevocation`]: crate::types::SignatureType::SubkeyRevocation
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// If `pk` is set to `None` the signature will be computed over the public key
    /// retrieved from the `signer` parameter.
    ///
    /// # Examples
    ///
    /// Add a new subkey intended for encrypting data in motion to an
    /// existing certificate:
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::{Curve, KeyFlags, SignatureType};
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().generate()?;
    /// # assert_eq!(cert.keys().count(), 1);
    ///
    /// let pk = cert.primary_key().key().clone().parts_into_secret()?;
    /// // Derive a signer.
    /// let mut pk_signer = pk.clone().into_keypair()?;
    ///
    /// // Generate an encryption subkey.
    /// let mut subkey: Key<_, _> =
    ///     Key4::generate_ecc(false, Curve::Cv25519)?.into();
    /// // Derive a signer.
    /// let mut sk_signer = subkey.clone().into_keypair()?;
    ///
    /// let sig = SignatureBuilder::new(SignatureType::SubkeyBinding)
    ///     .set_key_flags(KeyFlags::empty().set_transport_encryption())?
    ///     .sign_subkey_binding(&mut pk_signer, None, &subkey)?;
    ///
    /// let cert = cert.insert_packets(vec![Packet::SecretSubkey(subkey),
    ///                                    sig.into()])?;
    ///
    /// assert_eq!(cert.with_policy(p, None)?.keys().count(), 2);
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_subkey_binding<'a, PK, Q>(mut self, signer: &mut dyn Signer,
                                     primary: PK,
                                     subkey: &Key<Q, key::SubordinateRole>)
        -> Result<Signature>
        where Q: key::KeyParts,
              PK: Into<Option<&'a Key<key::PublicParts, key::PrimaryRole>>>,
    {
        match self.typ {
            SignatureType::SubkeyBinding => (),
            SignatureType::SubkeyRevocation => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        self = self.pre_sign(signer)?;

        let primary = primary.into().unwrap_or_else(|| signer.public().role_as_primary());
        let mut hash = self.hash_algo().context()?;
        self.hash_subkey_binding(&mut hash, primary, subkey);
        self.sign(signer, hash.into_digest()?)
    }

    /// Generates a primary key binding signature.
    ///
    /// A [primary key binding signature], also referred to as a back
    /// signature or backsig, is a signature over the primary key and
    /// a subkey, which is made by the subkey.  This signature is a
    /// statement by the subkey that it belongs to the primary key.
    /// That is, it binds the certificate to the subkey.  It is
    /// normally stored in the subkey binding signature (see
    /// [`SignatureBuilder::sign_subkey_binding`]) in the [`Embedded
    /// Signature`] subpacket (set using
    /// [`SignatureBuilder::set_embedded_signature`]).
    ///
    ///   [primary key binding signature]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///   [`SignatureBuilder::sign_subkey_binding`]: SignatureBuilder::sign_subkey_binding()
    ///   [`Embedded Signature`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.26
    ///   [`SignatureBuilder::set_embedded_signature`]: SignatureBuilder::set_embedded_signature()
    ///
    /// All subkeys that make signatures of any sort (signature
    /// subkeys, certification subkeys, and authentication subkeys)
    /// must include this signature in their binding signature.  This
    /// signature ensures that an attacker (Mallory) can't claim
    /// someone else's (Alice's) signing key by just creating a subkey
    /// binding signature.  If that were the case, anyone who has
    /// Mallory's certificate could be tricked into thinking that
    /// Mallory made signatures that were actually made by Alice.
    /// This signature prevents this attack, because it proves that
    /// the person who controls the private key for the primary key
    /// also controls the private key for the subkey and therefore
    /// intended that the subkey be associated with the primary key.
    /// Thus, although Mallory controls his own primary key and can
    /// issue a subkey binding signature for Alice's signing key, he
    /// doesn't control her signing key, and therefore can't create a
    /// valid backsig.
    ///
    /// A primary key binding signature is not needed for
    /// encryption-capable subkeys.  This is firstly because
    /// encryption-capable keys cannot make signatures.  But also
    /// because an attacker doesn't gain anything by adopting an
    /// encryption-capable subkey: without the private key material,
    /// they still can't read the message's content.
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is
    /// [`SignatureType::PrimaryKeyBinding`], or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`SignatureType::PrimaryKeyBinding`]: crate::types::SignatureType::PrimaryKeyBinding
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// # Examples
    ///
    /// Add a new signing-capable subkey to an existing certificate.
    /// Because we are adding a signing-capable subkey, the binding
    /// signature needs to include a backsig.
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::{Curve, KeyFlags, SignatureType};
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().generate()?;
    /// # assert_eq!(cert.keys().count(), 1);
    ///
    /// let pk = cert.primary_key().key().clone().parts_into_secret()?;
    /// // Derive a signer.
    /// let mut pk_signer = pk.clone().into_keypair()?;
    ///
    /// // Generate a signing subkey.
    /// let mut subkey: Key<_, _> =
    ///     Key4::generate_ecc(true, Curve::Ed25519)?.into();
    /// // Derive a signer.
    /// let mut sk_signer = subkey.clone().into_keypair()?;
    ///
    /// let sig = SignatureBuilder::new(SignatureType::SubkeyBinding)
    ///     .set_key_flags(KeyFlags::empty().set_signing())?
    ///     // The backsig.  This is essential for subkeys that create signatures!
    ///     .set_embedded_signature(
    ///         SignatureBuilder::new(SignatureType::PrimaryKeyBinding)
    ///             .sign_primary_key_binding(&mut sk_signer, &pk, &subkey)?)?
    ///     .sign_subkey_binding(&mut pk_signer, None, &subkey)?;
    ///
    /// let cert = cert.insert_packets(vec![Packet::SecretSubkey(subkey),
    ///                                    sig.into()])?;
    ///
    /// assert_eq!(cert.with_policy(p, None)?.keys().count(), 2);
    /// # assert_eq!(cert.bad_signatures().count(), 0);
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_primary_key_binding<P, Q>(mut self,
                                          subkey_signer: &mut dyn Signer,
                                          primary: &Key<P, key::PrimaryRole>,
                                          subkey: &Key<Q, key::SubordinateRole>)
        -> Result<Signature>
        where P: key::KeyParts,
              Q: key::KeyParts,
    {
        match self.typ {
            SignatureType::PrimaryKeyBinding => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        self = self.pre_sign(subkey_signer)?;

        let mut hash = self.hash_algo().context()?;
        self.hash_primary_key_binding(&mut hash, primary, subkey);
        self.sign(subkey_signer, hash.into_digest()?)
    }


    /// Generates a User Attribute binding signature.
    ///
    /// A User Attribute binding signature or certification, a type of
    /// [User ID certification], is a signature over a User Attribute
    /// and a Primary Key.  It asserts that the signer is convinced
    /// that the User Attribute should be associated with the
    /// Certificate, i.e., that the binding is authentic.
    ///
    ///   [User ID certification]: https://tools.ietf.org/html/rfc4880#section-5.2.1
    ///
    /// OpenPGP has four types of User Attribute certifications.  They
    /// are intended to express the degree of the signer's conviction.
    /// In practice, the `Positive Certification` type is used for
    /// self-signatures, and the `Generic Certification` is used for
    /// third-party certifications; the other types are not normally
    /// used.
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is [`GenericCertification`],
    /// [`PersonaCertification`], [`CasualCertification`],
    /// [`PositiveCertification`], [`CertificationRevocation`], or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`GenericCertification`]: crate::types::SignatureType::GenericCertification
    ///   [`PersonaCertification`]: crate::types::SignatureType::PersonaCertification
    ///   [`CasualCertification`]: crate::types::SignatureType::CasualCertification
    ///   [`PositiveCertification`]: crate::types::SignatureType::PositiveCertification
    ///   [`CertificationRevocation`]: crate::types::SignatureType::CertificationRevocation
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// If `pk` is set to `None` the signature will be computed over the public key
    /// retrieved from the `signer` parameter, i.e. a self-signature will be created.
    ///  To create a third-party-signature provide an explicit public key as the
    /// `pk` parameter.
    ///
    /// # Examples
    ///
    /// Add a new User Attribute to an existing certificate:
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SignatureType;
    /// # use openpgp::packet::user_attribute::{Subpacket, Image};
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// # // Add a bare user attribute.
    /// # let ua = UserAttribute::new(&[
    /// #     Subpacket::Image(
    /// #         Image::Private(100, vec![0, 1, 2].into_boxed_slice())),
    /// # ])?;
    /// #
    /// let (cert, _) = CertBuilder::new().generate()?;
    /// # assert_eq!(cert.user_attributes().count(), 0);
    ///
    /// // Add a user attribute.
    ///
    /// // Get a usable (alive, non-revoked) certification key.
    /// let key : &Key<_, _> = cert
    ///     .keys().with_policy(p, None)
    ///     .for_certification().alive().revoked(false).nth(0).unwrap().key();
    /// // Derive a signer.
    /// let mut signer = key.clone().parts_into_secret()?.into_keypair()?;
    ///
    /// let pk = cert.primary_key().key();
    ///
    /// let mut sig =
    ///     SignatureBuilder::new(SignatureType::PositiveCertification)
    ///     .sign_user_attribute_binding(&mut signer, None, &ua)?;
    ///
    /// // Verify it.
    /// sig.verify_user_attribute_binding(signer.public(), pk, &ua)?;
    ///
    /// let cert = cert.insert_packets(vec![Packet::from(ua), sig.into()])?;
    /// assert_eq!(cert.with_policy(p, None)?.user_attributes().count(), 1);
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_user_attribute_binding<'a, PK>(mut self, signer: &mut dyn Signer,
                                          key: PK, ua: &UserAttribute)
        -> Result<Signature>
        where PK: Into<Option<&'a Key<key::PublicParts, key::PrimaryRole>>>
    {
        match self.typ {
            SignatureType::GenericCertification => (),
            SignatureType::PersonaCertification => (),
            SignatureType::CasualCertification => (),
            SignatureType::PositiveCertification => (),
            SignatureType::CertificationRevocation => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        self = self.pre_sign(signer)?;

        let key = key.into().unwrap_or_else(|| signer.public().role_as_primary());

        let mut hash = self.hash_algo().context()?;
        self.hash_user_attribute_binding(&mut hash, key, ua);
        self.sign(signer, hash.into_digest()?)
    }

    /// Generates a signature.
    ///
    /// This is a low-level function.  Normally, you'll want to use
    /// one of the higher-level functions, like
    /// [`SignatureBuilder::sign_userid_binding`].  But, this function
    /// is useful if you want to create a [`Signature`] for an
    /// unsupported signature type.
    ///
    ///   [`SignatureBuilder::sign_userid_binding`]: SignatureBuilder::sign_userid_binding()
    ///   [`Signature`]: super::Signature
    ///
    /// The `Signature`'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    pub fn sign_hash(mut self, signer: &mut dyn Signer,
                     mut hash: Box<dyn hash::Digest>)
        -> Result<Signature>
    {
        self.hash_algo = hash.algo();

        self = self.pre_sign(signer)?;

        self.hash(&mut hash);
        let mut digest = vec![0u8; hash.digest_size()];
        hash.digest(&mut digest)?;

        self.sign(signer, digest)
    }

    /// Signs a message.
    ///
    /// Normally, you'll want to use the [streaming `Signer`] to sign
    /// a message.
    ///
    ///  [streaming `Signer`]: crate::serialize::stream::Signer
    ///
    /// OpenPGP supports two types of signatures over messages: binary
    /// and text.  The text version normalizes line endings.  But,
    /// since nearly all software today can deal with both Unix and
    /// DOS line endings, it is better to just use the binary version
    /// even when dealing with text.  This avoids any possible
    /// ambiguity.
    ///
    /// This function checks that the [signature type] (passed to
    /// [`SignatureBuilder::new`], set via
    /// [`SignatureBuilder::set_type`], or copied when using
    /// `SignatureBuilder::From`) is [`Binary`], [`Text`], or
    /// [`SignatureType::Unknown`].
    ///
    ///   [signature type]: crate::types::SignatureType
    ///   [`SignatureBuilder::new`]: SignatureBuilder::new()
    ///   [`SignatureBuilder::set_type`]: SignatureBuilder::set_type()
    ///   [`Binary`]: crate::types::SignatureType::Binary
    ///   [`Text`]: crate::types::SignatureType::Text
    ///   [`SignatureType::Unknown`]: crate::types::SignatureType::Unknown
    ///
    /// The [`Signature`]'s public-key algorithm field is set to the
    /// algorithm used by `signer`.
    ///
    ///   [`Signature`]: super::Signature
    ///
    /// If neither an [`Issuer`] subpacket (set using
    /// [`SignatureBuilder::set_issuer`], for instance) nor an
    /// [`Issuer Fingerprint`] subpacket (set using
    /// [`SignatureBuilder::set_issuer_fingerprint`], for instance) is
    /// set, they are both added to the new `Signature`'s hashed
    /// subpacket area and set to the `signer`'s `KeyID` and
    /// `Fingerprint`, respectively.
    ///
    ///   [`Issuer`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [`SignatureBuilder::set_issuer`]: SignatureBuilder::set_issuer()
    ///   [`Issuer Fingerprint`]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///   [`SignatureBuilder::set_issuer_fingerprint`]: SignatureBuilder::set_issuer_fingerprint()
    ///
    /// Likewise, a [`Signature Creation Time`] subpacket set to the
    /// current time is added to the hashed area if the `Signature
    /// Creation Time` subpacket hasn't been set using, for instance,
    /// the [`set_signature_creation_time`] method or the
    /// [`preserve_signature_creation_time`] method.
    ///
    ///   [`Signature Creation Time`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.4
    ///   [`set_signature_creation_time`]: SignatureBuilder::set_signature_creation_time()
    ///   [`preserve_signature_creation_time`]: SignatureBuilder::preserve_signature_creation_time()
    ///
    /// # Examples
    ///
    /// Signs a document.  For large messages, you should use the
    /// [streaming `Signer`], which streams the message's content.
    ///
    ///  [streaming `Signer`]: crate::serialize::stream::Signer
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SignatureType;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().add_signing_subkey().generate()?;
    ///
    /// // Get a usable (alive, non-revoked) signing key.
    /// let key : &Key<_, _> = cert
    ///     .keys().with_policy(p, None)
    ///     .for_signing().alive().revoked(false).nth(0).unwrap().key();
    /// // Derive a signer.
    /// let mut signer = key.clone().parts_into_secret()?.into_keypair()?;
    ///
    /// // For large messages, you should use openpgp::serialize::stream::Signer,
    /// // which streams the message's content.
    /// let msg = b"Hello, world!";
    /// let mut sig = SignatureBuilder::new(SignatureType::Binary)
    ///     .sign_message(&mut signer, msg)?;
    ///
    /// // Verify it.
    /// sig.verify_message(signer.public(), msg)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn sign_message<M>(mut self, signer: &mut dyn Signer, msg: M)
        -> Result<Signature>
        where M: AsRef<[u8]>
    {
        match self.typ {
            SignatureType::Binary => (),
            SignatureType::Text => (),
            SignatureType::Unknown(_) => (),
            _ => return Err(Error::UnsupportedSignatureType(self.typ).into()),
        }

        // Hash the message
        let mut hash = self.hash_algo.context()?;
        hash.update(msg.as_ref());

        self = self.pre_sign(signer)?;

        self.hash(&mut hash);
        let mut digest = vec![0u8; hash.digest_size()];
        hash.digest(&mut digest)?;

        self.sign(signer, digest)
    }

    /// Sets the signature builder's default reference time.
    ///
    /// The reference time is used when no time is specified.  The
    /// reference time is the current time by default and is evaluated
    /// on demand.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::{Duration, SystemTime};
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::SignatureType;
    /// use openpgp::packet::prelude::*;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// #
    /// // If we don't set a reference time, then the current time is used
    /// // when the signature is created.
    /// let sig = SignatureBuilder::new(SignatureType::PositiveCertification);
    /// let ct = sig.effective_signature_creation_time()?.expect("creation time");
    /// assert!(SystemTime::now().duration_since(ct).expect("ct is in the past")
    ///         < Duration::new(1, 0));
    ///
    /// // If we set a reference time and don't set a creation time,
    /// // then that time is used for the creation time.
    /// let t = std::time::UNIX_EPOCH + Duration::new(1646660000, 0);
    /// let sig = sig.set_reference_time(t);
    /// assert_eq!(sig.effective_signature_creation_time()?, Some(t));
    /// # Ok(()) }
    /// ```
    pub fn set_reference_time<T>(mut self, reference_time: T) -> Self
    where
        T: Into<Option<SystemTime>>,
    {
        self.reference_time = reference_time.into();
        self
    }

    /// Returns the signature creation time that would be used if a
    /// signature were created now.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::time::{Duration, SystemTime};
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::types::SignatureType;
    /// use openpgp::packet::prelude::*;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// #
    /// // If we don't set a creation time, then the current time is used.
    /// let sig = SignatureBuilder::new(SignatureType::PositiveCertification);
    /// let ct = sig.effective_signature_creation_time()?.expect("creation time");
    /// assert!(SystemTime::now().duration_since(ct).expect("ct is in the past")
    ///         < Duration::new(1, 0));
    ///
    /// // If we set a signature creation time, then we should get it back.
    /// let t = SystemTime::now() - Duration::new(24 * 60 * 60, 0);
    /// let sig = sig.set_signature_creation_time(t)?;
    /// assert!(t.duration_since(
    ///             sig.effective_signature_creation_time()?.unwrap()).unwrap()
    ///         < Duration::new(1, 0));
    /// # Ok(()) }
    /// ```
    pub fn effective_signature_creation_time(&self)
        -> Result<Option<SystemTime>>
    {
        use std::time;

        let now = || -> Result<SystemTime> {
            let rt = self.reference_time.unwrap_or_else(crate::now);
            // Roundtrip via Timestamp to ensure that the time has the
            // right resolution and is representable.
            Ok(SystemTime::from(Timestamp::try_from(rt)?))
        };

        if ! self.overrode_creation_time {
            // See if we want to backdate the signature.
            if let Some(orig) = self.original_creation_time {
                let now = now()?;
                let t =
                    (orig + time::Duration::new(1, 0)).max(
                        now - time::Duration::new(SIG_BACKDATE_BY, 0));

                if t > now {
                    return Err(Error::InvalidOperation(
                        "Cannot create valid signature newer than SignatureBuilder template"
                            .into()).into());
                }

                Ok(Some(t))
            } else {
                Ok(Some(now()?))
            }
        } else {
            Ok(self.signature_creation_time())
        }
    }

    /// Adjusts signature prior to signing.
    ///
    /// This function is called implicitly when a signature is created
    /// (e.g. using [`SignatureBuilder::sign_message`]).  Usually,
    /// there is no need to call it explicitly.
    ///
    /// This function makes sure that generated signatures have a
    /// creation time, issuer information, and are not predictable by
    /// including a salt.  Then, it sorts the subpackets.  The
    /// function is idempotent modulo salt value.
    ///
    /// # Examples
    ///
    /// Occasionally, it is useful to determine the available space in
    /// a subpacket area.  To take the effect of this function into
    /// account, call this function explicitly:
    ///
    /// ```
    /// # use sequoia_openpgp as openpgp;
    /// # fn main() -> openpgp::Result<()> {
    /// # use openpgp::packet::prelude::*;
    /// # use openpgp::types::Curve;
    /// # use openpgp::packet::signature::subpacket::SubpacketArea;
    /// # use openpgp::types::SignatureType;
    /// #
    /// # let key: Key<key::SecretParts, key::PrimaryRole>
    /// #     = Key::from(Key4::generate_ecc(true, Curve::Ed25519)?);
    /// # let mut signer = key.into_keypair()?;
    /// let sig = SignatureBuilder::new(SignatureType::Binary)
    ///     .pre_sign(&mut signer)?; // Important for size calculation.
    ///
    /// // Compute the available space in the hashed area.  For this,
    /// // it is important that template.pre_sign has been called.
    /// use openpgp::serialize::MarshalInto;
    /// let available_space =
    ///     SubpacketArea::MAX_SIZE - sig.hashed_area().serialized_len();
    ///
    /// // Let's check whether our prediction was right.
    /// let sig = sig.sign_message(&mut signer, b"Hello World :)")?;
    /// assert_eq!(
    ///     available_space,
    ///     SubpacketArea::MAX_SIZE - sig.hashed_area().serialized_len());
    /// # Ok(()) }
    /// ```
    pub fn pre_sign(mut self, signer: &dyn Signer) -> Result<Self> {
        self.pk_algo = signer.public().pk_algo();

        // Set the creation time.
        if ! self.overrode_creation_time {
            if let Some(t) = self.effective_signature_creation_time()? {
                self = self.set_signature_creation_time(t)?;
            }
        }

        // Make sure we have an issuer packet.
        if self.issuers().next().is_none()
            && self.issuer_fingerprints().next().is_none()
        {
            self = self.set_issuer(signer.public().keyid())?
                .set_issuer_fingerprint(signer.public().fingerprint())?;
        }

        // Add a salt to make the signature unpredictable.
        let mut salt = [0; 32];
        crate::crypto::random(&mut salt);
        self = self.set_notation("salt@notations.sequoia-pgp.org",
                                 salt, None, false)?;

        self.sort();

        Ok(self)
    }

    fn sign(self, signer: &mut dyn Signer, digest: Vec<u8>)
        -> Result<Signature>
    {
        let mpis = signer.sign(self.hash_algo, &digest)?;

        Ok(Signature4 {
            common: Default::default(),
            fields: self.fields,
            digest_prefix: [digest[0], digest[1]],
            mpis,
            computed_digest: Some(digest),
            level: 0,
            additional_issuers: Vec::with_capacity(0),
        }.into())
    }
}

impl From<Signature> for SignatureBuilder {
    fn from(sig: Signature) -> Self {
        match sig {
            Signature::V3(sig) => sig.into(),
            Signature::V4(sig) => sig.into(),
        }
    }
}

impl From<Signature4> for SignatureBuilder {
    fn from(sig: Signature4) -> Self {
        let mut fields = sig.fields;

        fields.hash_algo = HashAlgorithm::default();

        let creation_time = fields.signature_creation_time();

        fields.hashed_area_mut().remove_all(SubpacketTag::SignatureCreationTime);
        fields.hashed_area_mut().remove_all(SubpacketTag::Issuer);
        fields.hashed_area_mut().remove_all(SubpacketTag::IssuerFingerprint);

        fields.unhashed_area_mut().remove_all(SubpacketTag::SignatureCreationTime);
        fields.unhashed_area_mut().remove_all(SubpacketTag::Issuer);
        fields.unhashed_area_mut().remove_all(SubpacketTag::IssuerFingerprint);

        SignatureBuilder {
            reference_time: None,
            overrode_creation_time: false,
            original_creation_time: creation_time,
            fields,
        }
    }
}

/// Holds a v4 Signature packet.
///
/// This holds a [version 4] Signature packet.  Normally, you won't
/// directly work with this data structure, but with the [`Signature`]
/// enum, which is version agnostic.  An exception is when you need to
/// do version-specific operations.  But currently, there aren't any
/// version-specific methods.
///
///   [version 4]: https://tools.ietf.org/html/rfc4880#section-5.2
///   [`Signature`]: super::Signature
#[derive(Clone)]
pub struct Signature4 {
    /// CTB packet header fields.
    pub(crate) common: packet::Common,

    /// Fields as configured using the SignatureBuilder.
    pub(crate) fields: SignatureFields,

    /// Upper 16 bits of the signed hash value.
    digest_prefix: [u8; 2],
    /// Signature MPIs.
    mpis: mpi::Signature,

    /// When used in conjunction with a one-pass signature, this is the
    /// hash computed over the enclosed message.
    computed_digest: Option<Vec<u8>>,

    /// Signature level.
    ///
    /// A level of 0 indicates that the signature is directly over the
    /// data, a level of 1 means that the signature is a notarization
    /// over all level 0 signatures and the data, and so on.
    level: usize,

    /// Additional issuer information.
    ///
    /// When we verify a signature successfully, we know the key that
    /// made the signature.  Hence, we can compute the fingerprint,
    /// either a V4 one or a later one.  If this information is
    /// missing from the signature, we can add it to the unhashed
    /// subpacket area at a convenient time.  We don't add it when
    /// verifying, because that would mean that verifying a signature
    /// would change the serialized representation, and signature
    /// verification is usually expected to be idempotent.
    additional_issuers: Vec<KeyHandle>,
}
assert_send_and_sync!(Signature4);

impl fmt::Debug for Signature4 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Signature4")
            .field("version", &self.version())
            .field("typ", &self.typ())
            .field("pk_algo", &self.pk_algo())
            .field("hash_algo", &self.hash_algo())
            .field("hashed_area", self.hashed_area())
            .field("unhashed_area", self.unhashed_area())
            .field("additional_issuers", &self.additional_issuers)
            .field("digest_prefix",
                   &crate::fmt::to_hex(&self.digest_prefix, false))
            .field(
                "computed_digest",
                &self
                    .computed_digest
                    .as_ref()
                    .map(|hash| crate::fmt::to_hex(&hash[..], false)),
            )
            .field("level", &self.level)
            .field("mpis", &self.mpis)
            .finish()
    }
}

impl PartialEq for Signature4 {
    /// This method tests for self and other values to be equal, and
    /// is used by ==.
    ///
    /// This method compares the serialized version of the two
    /// packets.  Thus, the computed values are ignored ([`level`],
    /// [`computed_digest`]).
    ///
    /// Note: because this function also compares the unhashed
    /// subpacket area, it is possible for a malicious party to take
    /// valid signatures, add subpackets to the unhashed area,
    /// yielding valid but distinct signatures.  If you want to ignore
    /// the unhashed area, you should instead use the
    /// [`Signature::normalized_eq`] method.
    ///
    /// [`level`]: Signature4::level()
    /// [`computed_digest`]: Signature4::computed_digest()
    fn eq(&self, other: &Signature4) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}

impl Eq for Signature4 {}

impl PartialOrd for Signature4 {
    fn partial_cmp(&self, other: &Signature4) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Signature4 {
    fn cmp(&self, other: &Signature4) -> Ordering {
        self.fields.cmp(&other.fields)
            .then_with(|| self.digest_prefix.cmp(&other.digest_prefix))
            .then_with(|| self.mpis.cmp(&other.mpis))
    }
}

impl std::hash::Hash for Signature4 {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        use std::hash::Hash as StdHash;
        StdHash::hash(&self.mpis, state);
        StdHash::hash(&self.fields, state);
        self.digest_prefix.hash(state);
    }
}

impl Signature4 {
    /// Creates a new signature packet.
    ///
    /// If you want to sign something, consider using the [`SignatureBuilder`]
    /// interface.
    pub fn new(typ: SignatureType, pk_algo: PublicKeyAlgorithm,
               hash_algo: HashAlgorithm, hashed_area: SubpacketArea,
               unhashed_area: SubpacketArea,
               digest_prefix: [u8; 2],
               mpis: mpi::Signature) -> Self {
        Signature4 {
            common: Default::default(),
            fields: SignatureFields {
                version: 4,
                typ,
                pk_algo,
                hash_algo,
                subpackets: SubpacketAreas::new(hashed_area, unhashed_area),
            },
            digest_prefix,
            mpis,
            computed_digest: None,
            level: 0,
            additional_issuers: Vec::with_capacity(0),
        }
    }

    /// Gets the public key algorithm.
    // SigantureFields::pk_algo is private, because we don't want it
    // available on SignatureBuilder, which also derefs to
    // &SignatureFields.
    pub fn pk_algo(&self) -> PublicKeyAlgorithm {
        self.fields.pk_algo()
    }

    /// Gets the hash prefix.
    pub fn digest_prefix(&self) -> &[u8; 2] {
        &self.digest_prefix
    }

    /// Sets the hash prefix.
    #[allow(dead_code)]
    pub(crate) fn set_digest_prefix(&mut self, prefix: [u8; 2]) -> [u8; 2] {
        ::std::mem::replace(&mut self.digest_prefix, prefix)
    }

    /// Gets the signature packet's MPIs.
    pub fn mpis(&self) -> &mpi::Signature {
        &self.mpis
    }

    /// Sets the signature packet's MPIs.
    #[allow(dead_code)]
    pub(crate) fn set_mpis(&mut self, mpis: mpi::Signature) -> mpi::Signature
    {
        ::std::mem::replace(&mut self.mpis, mpis)
    }

    /// Gets the computed hash value.
    ///
    /// This is set by the [`PacketParser`] when parsing the message.
    ///
    /// [`PacketParser`]: crate::parse::PacketParser
    pub fn computed_digest(&self) -> Option<&[u8]> {
        self.computed_digest.as_ref().map(|d| &d[..])
    }

    /// Sets the computed hash value.
    pub(crate) fn set_computed_digest(&mut self, hash: Option<Vec<u8>>)
        -> Option<Vec<u8>>
    {
        ::std::mem::replace(&mut self.computed_digest, hash)
    }

    /// Gets the signature level.
    ///
    /// A level of 0 indicates that the signature is directly over the
    /// data, a level of 1 means that the signature is a notarization
    /// over all level 0 signatures and the data, and so on.
    pub fn level(&self) -> usize {
        self.level
    }

    /// Sets the signature level.
    ///
    /// A level of 0 indicates that the signature is directly over the
    /// data, a level of 1 means that the signature is a notarization
    /// over all level 0 signatures and the data, and so on.
    pub(crate) fn set_level(&mut self, level: usize) -> usize {
        ::std::mem::replace(&mut self.level, level)
    }

    /// Returns whether or not this signature should be exported.
    ///
    /// This checks whether the [`Exportable Certification`] subpacket
    /// is absent or present and 1, and that the signature does not
    /// include any sensitive [`Revocation Key`] (designated revokers)
    /// subpackets.
    ///
    ///   [`Exportable Certification`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.11
    ///   [`Revocation Key`]: https://tools.ietf.org/html/rfc4880#section-5.2.3.15
    pub fn exportable(&self) -> Result<()> {
        if ! self.exportable_certification().unwrap_or(true) {
            return Err(Error::InvalidOperation(
                "Cannot export non-exportable certification".into()).into());
        }

        if self.revocation_keys().any(|r| r.sensitive()) {
            return Err(Error::InvalidOperation(
                "Cannot export signature with sensitive designated revoker"
                    .into()).into());
        }

        Ok(())
    }
}

impl From<Signature3> for SignatureBuilder {
    fn from(sig: Signature3) -> Self {
        SignatureBuilder::from(sig.intern)
    }
}

/// Holds a v3 Signature packet.
///
/// This holds a [version 3] Signature packet.  Normally, you won't
/// directly work with this data structure, but with the [`Signature`]
/// enum, which is version agnostic.  An exception is when you need to
/// do version-specific operations.  But currently, there aren't any
/// version-specific methods.
///
///   [version 3]: https://tools.ietf.org/html/rfc4880#section-5.2
///   [`Signature`]: super::Signature
///
/// Note: Per RFC 4880, v3 signatures should not be generated, but
/// they should be accepted.  As such, support for version 3
/// signatures is limited to verifying them, but not generating them.
#[derive(Clone)]
pub struct Signature3 {
    pub(crate) intern: Signature4,
}
assert_send_and_sync!(Signature3);

impl TryFrom<Signature> for Signature3 {
    type Error = anyhow::Error;

    fn try_from(sig: Signature) -> Result<Self> {
        match sig {
            Signature::V3(sig) => Ok(sig),
            sig => Err(
                Error::InvalidArgument(
                    format!(
                        "Got a v{}, require a v3 signature",
                        sig.version()))
                    .into()),
        }
    }
}

// Yes, Signature3 derefs to Signature4.  This is because Signature
// derefs to Signature4 so this is the only way to add support for v3
// sigs without breaking the semver.
impl Deref for Signature3 {
    type Target = Signature4;

    fn deref(&self) -> &Self::Target {
        &self.intern
    }
}

impl DerefMut for Signature3 {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.intern
    }
}

impl fmt::Debug for Signature3 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Signature3")
            .field("version", &self.version())
            .field("typ", &self.typ())
            .field("pk_algo", &self.pk_algo())
            .field("hash_algo", &self.hash_algo())
            .field("hashed_area", self.hashed_area())
            .field("unhashed_area", self.unhashed_area())
            .field("additional_issuers", &self.additional_issuers)
            .field("digest_prefix",
                   &crate::fmt::to_hex(&self.digest_prefix, false))
            .field(
                "computed_digest",
                &self
                    .computed_digest
                    .as_ref()
                    .map(|hash| crate::fmt::to_hex(&hash[..], false)),
            )
            .field("level", &self.level)
            .field("mpis", &self.mpis)
            .finish()
    }
}

impl PartialEq for Signature3 {
    /// This method tests for self and other values to be equal, and
    /// is used by ==.
    ///
    /// This method compares the serialized version of the two
    /// packets.  Thus, the computed values are ignored ([`level`],
    /// [`computed_digest`]).
    ///
    /// [`level`]: Signature3::level()
    /// [`computed_digest`]: Signature3::computed_digest()
    fn eq(&self, other: &Signature3) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}

impl Eq for Signature3 {}

impl PartialOrd for Signature3 {
    fn partial_cmp(&self, other: &Signature3) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for Signature3 {
    fn cmp(&self, other: &Signature3) -> Ordering {
        self.intern.cmp(&other.intern)
    }
}

impl std::hash::Hash for Signature3 {
    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
        use std::hash::Hash as StdHash;
        StdHash::hash(&self.intern, state);
    }
}

impl Signature3 {
    /// Creates a new signature packet.
    ///
    /// If you want to sign something, consider using the [`SignatureBuilder`]
    /// interface.
    ///
    pub fn new(typ: SignatureType, creation_time: Timestamp,
               issuer: KeyID,
               pk_algo: PublicKeyAlgorithm,
               hash_algo: HashAlgorithm,
               digest_prefix: [u8; 2],
               mpis: mpi::Signature) -> Self {
        let hashed_area = SubpacketArea::new(vec![
            Subpacket::new(
                SubpacketValue::SignatureCreationTime(creation_time),
                true).expect("fits"),
        ]).expect("fits");
        let unhashed_area = SubpacketArea::new(vec![
            Subpacket::new(
                SubpacketValue::Issuer(issuer),
                false).expect("fits"),
        ]).expect("fits");

        let mut sig = Signature4::new(typ,
                                      pk_algo, hash_algo,
                                      hashed_area, unhashed_area,
                                      digest_prefix, mpis);
        sig.version = 3;

        Signature3 {
            intern: sig,
        }
    }

    /// Gets the public key algorithm.
    // SigantureFields::pk_algo is private, because we don't want it
    // available on SignatureBuilder, which also derefs to
    // &SignatureFields.
    pub fn pk_algo(&self) -> PublicKeyAlgorithm {
        self.fields.pk_algo()
    }

    /// Gets the hash prefix.
    pub fn digest_prefix(&self) -> &[u8; 2] {
        &self.digest_prefix
    }

    /// Gets the signature packet's MPIs.
    pub fn mpis(&self) -> &mpi::Signature {
        &self.mpis
    }

    /// Gets the computed hash value.
    ///
    /// This is set by the [`PacketParser`] when parsing the message.
    ///
    /// [`PacketParser`]: crate::parse::PacketParser
    pub fn computed_digest(&self) -> Option<&[u8]> {
        self.computed_digest.as_ref().map(|d| &d[..])
    }

    /// Gets the signature level.
    ///
    /// A level of 0 indicates that the signature is directly over the
    /// data, a level of 1 means that the signature is a notarization
    /// over all level 0 signatures and the data, and so on.
    pub fn level(&self) -> usize {
        self.level
    }
}

impl crate::packet::Signature {
    /// Returns the value of any Issuer and Issuer Fingerprint subpackets.
    ///
    /// The [Issuer subpacket] and [Issuer Fingerprint subpacket] are
    /// used when processing a signature to identify which certificate
    /// created the signature.  Since this information is
    /// self-authenticating (the act of validating the signature
    /// authenticates the subpacket), it is typically stored in the
    /// unhashed subpacket area.
    ///
    ///   [Issuer subpacket]: https://tools.ietf.org/html/rfc4880#section-5.2.3.5
    ///   [Issuer Fingerprint subpacket]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-09.html#section-5.2.3.28
    ///
    /// This function returns all instances of the Issuer subpacket
    /// and the Issuer Fingerprint subpacket in both the hashed
    /// subpacket area and the unhashed subpacket area.
    ///
    /// The issuers are sorted so that the `Fingerprints` come before
    /// `KeyID`s.  The `Fingerprint`s and `KeyID`s are not further
    /// sorted, but are returned in the order that they are
    /// encountered.
    pub fn get_issuers(&self) -> Vec<crate::KeyHandle> {
        let mut issuers: Vec<_> =
            self.hashed_area().iter()
            .chain(self.unhashed_area().iter())
            .filter_map(|subpacket| {
                match subpacket.value() {
                    SubpacketValue::Issuer(i) => Some(i.into()),
                    SubpacketValue::IssuerFingerprint(i) => Some(i.into()),
                    _ => None,
                }
            })
            .collect();

        // Sort the issuers so that the fingerprints come first.
        issuers.sort_by(|a, b| {
            use crate::KeyHandle::*;
            use std::cmp::Ordering::*;
            match (a, b) {
                (Fingerprint(_), Fingerprint(_)) => Equal,
                (KeyID(_), Fingerprint(_)) => Greater,
                (Fingerprint(_), KeyID(_)) => Less,
                (KeyID(_), KeyID(_)) => Equal,
            }
        });

        issuers
    }

    /// Compares Signatures ignoring the unhashed subpacket area.
    ///
    /// This comparison function ignores the unhashed subpacket area
    /// when comparing two signatures.  This prevents a malicious
    /// party from taking valid signatures, adding subpackets to the
    /// unhashed area, and deriving valid but distinct signatures,
    /// which could be used to perform a denial of service attack.
    /// For instance, an attacker could create a lot of signatures,
    /// which need to be validated.  Ignoring the unhashed subpackets
    /// means that we can deduplicate signatures using this predicate.
    ///
    /// Unlike [`Signature::normalize`], this method ignores
    /// authenticated packets in the unhashed subpacket area.
    ///
    /// # Examples
    ///
    /// ```
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::packet::signature::subpacket::{Subpacket, SubpacketValue};
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SignatureType;
    /// use openpgp::types::Features;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().generate()?;
    ///
    /// let orig = cert.with_policy(p, None)?.direct_key_signature()?;
    ///
    /// // Add an inconspicuous subpacket to the unhashed area.
    /// let sb = Subpacket::new(SubpacketValue::Features(Features::empty()), false)?;
    /// let mut modified = orig.clone();
    /// modified.unhashed_area_mut().add(sb);
    ///
    /// // We modified the signature, but the signature is still valid.
    /// modified.verify_direct_key(cert.primary_key().key(), cert.primary_key().key());
    ///
    /// // PartialEq considers the packets to not be equal...
    /// assert!(orig != &modified);
    /// // ... but normalized_eq does.
    /// assert!(orig.normalized_eq(&modified));
    /// # Ok(())
    /// # }
    /// ```
    pub fn normalized_eq(&self, other: &Signature) -> bool {
        self.normalized_cmp(other) == Ordering::Equal
    }

    /// Compares Signatures ignoring the unhashed subpacket area.
    ///
    /// This is useful to deduplicate signatures by first sorting them
    /// using this function, and then deduplicating using the
    /// [`Signature::normalized_eq`] predicate.
    ///
    /// This comparison function ignores the unhashed subpacket area
    /// when comparing two signatures.  This prevents a malicious
    /// party from taking valid signatures, adding subpackets to the
    /// unhashed area, and deriving valid but distinct signatures,
    /// which could be used to perform a denial of service attack.
    /// For instance, an attacker could create a lot of signatures,
    /// which need to be validated.  Ignoring the unhashed subpackets
    /// means that we can deduplicate signatures using this predicate.
    ///
    /// Unlike [`Signature::normalize`], this method ignores
    /// authenticated packets in the unhashed subpacket area.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::cmp::Ordering;
    /// use sequoia_openpgp as openpgp;
    /// use openpgp::cert::prelude::*;
    /// use openpgp::packet::prelude::*;
    /// use openpgp::packet::signature::subpacket::{Subpacket, SubpacketValue};
    /// use openpgp::policy::StandardPolicy;
    /// use openpgp::types::SignatureType;
    /// use openpgp::types::Features;
    ///
    /// # fn main() -> openpgp::Result<()> {
    /// let p = &StandardPolicy::new();
    ///
    /// let (cert, _) = CertBuilder::new().generate()?;
    ///
    /// let orig = cert.with_policy(p, None)?.direct_key_signature()?;
    ///
    /// // Add an inconspicuous subpacket to the unhashed area.
    /// let sb = Subpacket::new(SubpacketValue::Features(Features::empty()), false)?;
    /// let mut modified = orig.clone();
    /// modified.unhashed_area_mut().add(sb);
    ///
    /// // We modified the signature, but the signature is still valid.
    /// modified.verify_direct_key(cert.primary_key().key(), cert.primary_key().key());
    ///
    /// // PartialEq considers the packets to not be equal...
    /// assert!(orig != &modified);
    /// // ... but normalized_partial_cmp does.
    /// assert!(orig.normalized_cmp(&modified) == Ordering::Equal);
    /// # Ok(()) }
    /// ```
    pub fn normalized_cmp(&self, other: &Signature)
                          -> Ordering {
        self.version().cmp(&other.version())
            .then_with(|| self.typ().cmp(&other.typ()))
            .then_with(|| self.pk_algo().cmp(&other.pk_algo()))
            .then_with(|| self.hash_algo().cmp(&other.hash_algo()))
            .then_with(|| self.hashed_area().cmp(other.hashed_area()))
            .then_with(|| self.digest_prefix().cmp(other.digest_prefix()))
            .then_with(|| self.mpis().cmp(other.mpis()))
    }

    /// Hashes everything but the unhashed subpacket area into state.
    ///
    /// This is an alternate implementation of [`Hash`], which does
    /// not hash the unhashed subpacket area.
    ///
    ///   [`Hash`]: std::hash::Hash
    ///
    /// Unlike [`Signature::normalize`], this method ignores
    /// authenticated packets in the unhashed subpacket area.
    pub fn normalized_hash<H>(&self, state: &mut H)
        where H: Hasher
    {
        use std::hash::Hash;

        self.version.hash(state);
        self.typ.hash(state);
        self.pk_algo.hash(state);
        self.hash_algo.hash(state);
        self.hashed_area().hash(state);
        self.digest_prefix().hash(state);
        Hash::hash(&self.mpis(), state);
    }

    /// Normalizes the signature.
    ///
    /// This function normalizes the *unhashed* signature subpackets.
    ///
    /// First, it removes all but the following self-authenticating
    /// subpackets:
    ///
    ///   - `SubpacketValue::Issuer`
    ///   - `SubpacketValue::IssuerFingerprint`
    ///   - `SubpacketValue::EmbeddedSignature`
    ///
    /// Note: the retained subpackets are not checked for validity.
    ///
    /// Then, it adds any missing issuer information to the unhashed
    /// subpacket area that has been computed when verifying the
    /// signature.
    pub fn normalize(&self) -> Self {
        use subpacket::SubpacketTag::*;
        let mut sig = self.clone();
        {
            let area = sig.unhashed_area_mut();
            area.clear();

            for spkt in self.unhashed_area().iter()
                .filter(|s| s.tag() == Issuer
                        || s.tag() == IssuerFingerprint
                        || s.tag() == EmbeddedSignature)
            {
                area.add(spkt.clone())
                    .expect("it did fit into the old area");
            }

            // Add missing issuer information.  This is icing on the
            // cake, hence it is only a best-effort mechanism that
            // silently fails.
            let _ = sig.add_missing_issuers();

            // Normalize the order of subpackets.
            sig.unhashed_area_mut().sort();
        }
        sig
    }

    /// Adds missing issuer information.
    ///
    /// Calling this function adds any missing issuer information to
    /// the unhashed subpacket area.
    ///
    /// When a signature is verified, the identity of the signing key
    /// is computed and stored in the `Signature` struct.  This
    /// information can be used to complement the issuer information
    /// stored in the signature.  Note that we don't do this
    /// automatically when verifying signatures, because that would
    /// change the serialized representation of the signature as a
    /// side-effect of verifying the signature.
    pub fn add_missing_issuers(&mut self) -> Result<()> {
        if self.additional_issuers.is_empty() {
            return Ok(());
        }

        if self.version() == 3 {
            return Err(Error::InvalidOperation(
                "cannot add information to v3 signature".into()).into());
        }

        /// Makes an authenticated subpacket.
        fn authenticated_subpacket(v: SubpacketValue) -> Result<Subpacket> {
            let mut p = Subpacket::new(v, false)?;
            p.set_authenticated(true);
            Ok(p)
        }

        let issuers = self.get_issuers();
        for id in std::mem::replace(&mut self.additional_issuers,
                                    Vec::with_capacity(0)) {
            if ! issuers.contains(&id) {
                match id {
                    KeyHandle::KeyID(id) =>
                        self.unhashed_area_mut().add(authenticated_subpacket(
                            SubpacketValue::Issuer(id))?)?,
                    KeyHandle::Fingerprint(fp) =>
                        self.unhashed_area_mut().add(authenticated_subpacket(
                            SubpacketValue::IssuerFingerprint(fp))?)?,
                }
            }
        }

        Ok(())
    }

    /// Merges two signatures.
    ///
    /// Two signatures that are equal according to
    /// [`Signature::normalized_eq`] may differ in the contents of the
    /// unhashed subpacket areas.  This function merges two signatures
    /// trying hard to incorporate all the information into one
    /// signature while avoiding denial of service attacks by merging
    /// in bad information.
    ///
    /// The merge strategy is as follows:
    ///
    ///   - If the signatures differ according to
    ///     [`Signature::normalized_eq`], the merge fails.
    ///
    ///   - Do not consider any subpacket that does not belong into
    ///     the unhashed subpacket area.
    ///
    ///   - Consider all remaining subpackets, in the following order.
    ///     If we run out of space, all remaining subpackets are
    ///     ignored.
    ///
    ///     - Authenticated subpackets from `self`
    ///     - Authenticated subpackets from `other`
    ///     - Unauthenticated subpackets from `self` commonly found in
    ///       unhashed areas
    ///     - Unauthenticated subpackets from `other` commonly found in
    ///       unhashed areas
    ///     - Remaining subpackets from `self`
    ///     - Remaining subpackets from `other`
    ///
    ///     See [`Subpacket::authenticated`] for how subpackets are
    ///     authenticated.  Subpackets commonly found in unhashed
    ///     areas are issuer information and embedded signatures.
    pub fn merge(mut self, other: Signature) -> Result<Signature> {
        self.merge_internal(&other)?;
        Ok(self)
    }

    /// Same as Signature::merge, but non-consuming for use with
    /// Vec::dedup_by.
    pub(crate) fn merge_internal(&mut self, other: &Signature) -> Result<()>
    {
        use crate::serialize::MarshalInto;

        if ! self.normalized_eq(other) {
            return Err(Error::InvalidArgument(
                "Signatures are not equal modulo unhashed subpackets".into())
                       .into());
        }

        // Filters subpackets that plausibly could be in the unhashed
        // area.
        fn eligible(p: &Subpacket) -> bool {
            use SubpacketTag::*;
            #[allow(deprecated)]
            match p.tag() {
                SignatureCreationTime
                    | SignatureExpirationTime
                    | ExportableCertification
                    | TrustSignature
                    | RegularExpression
                    | Revocable
                    | KeyExpirationTime
                    | PlaceholderForBackwardCompatibility
                    | PreferredSymmetricAlgorithms
                    | RevocationKey
                    | PreferredHashAlgorithms
                    | PreferredCompressionAlgorithms
                    | KeyServerPreferences
                    | PreferredKeyServer
                    | PrimaryUserID
                    | PolicyURI
                    | KeyFlags
                    | SignersUserID
                    | ReasonForRevocation
                    | Features
                    | SignatureTarget
                    | PreferredAEADAlgorithms
                    | IntendedRecipient
                    | AttestedCertifications
                    | Reserved(_)
                    => false,
                Issuer
                    | NotationData
                    | EmbeddedSignature
                    | IssuerFingerprint
                    | Private(_)
                    | Unknown(_)
                    => true,
            }
        }

        // Filters subpackets that usually are in the unhashed area.
        fn prefer(p: &Subpacket) -> bool {
            use SubpacketTag::*;
            matches!(p.tag(), Issuer | EmbeddedSignature | IssuerFingerprint)
        }

        // Collect subpackets keeping track of the size.
        #[allow(clippy::mutable_key_type)]
        // In general, the keys of a HashSet should not have interior mutability.
        // This particular use should be safe:  The hash set is only constructed
        // for the merge, we own all objects we put into the set, and we don't
        // modify them while they are in the set.
        let mut acc = std::collections::HashSet::new();
        let mut size = 0;

        // Start with missing issuer information.
        for id in std::mem::replace(&mut self.additional_issuers,
                                    Vec::with_capacity(0)).into_iter()
            .chain(other.additional_issuers.iter().cloned())
        {
            let p = match id {
                KeyHandle::KeyID(id) => Subpacket::new(
                    SubpacketValue::Issuer(id), false)?,
                KeyHandle::Fingerprint(fp) => Subpacket::new(
                    SubpacketValue::IssuerFingerprint(fp), false)?,
            };

            let l = p.serialized_len();
            if size + l <= std::u16::MAX as usize && acc.insert(p.clone()) {
                size += l;
            }
        }

        // Make multiple passes over the subpacket areas.  Always
        // start with self, then other.  Only consider eligible
        // packets.  Consider authenticated ones first, then plausible
        // unauthenticated ones, then the rest.  If inserting fails at
        // any moment, stop.
        for p in
            self.unhashed_area().iter()
                   .filter(|p| eligible(p) && p.authenticated())
            .chain(other.unhashed_area().iter()
                   .filter(|p| eligible(p) && p.authenticated()))
            .chain(self.unhashed_area().iter()
                   .filter(|p| eligible(p) && ! p.authenticated() && prefer(p)))
            .chain(other.unhashed_area().iter()
                   .filter(|p| eligible(p) && ! p.authenticated() && prefer(p)))
            .chain(self.unhashed_area().iter()
                   .filter(|p| eligible(p) && ! p.authenticated() && ! prefer(p)))
            .chain(other.unhashed_area().iter()
                   .filter(|p| eligible(p) && ! p.authenticated() && ! prefer(p)))
        {
            let l = p.serialized_len();
            if size + l <= std::u16::MAX as usize && acc.insert(p.clone()) {
                size += l;
            }
        }
        assert!(size <= std::u16::MAX as usize);
        let mut a = SubpacketArea::new(acc.into_iter().collect())
            .expect("must fit");
        a.sort();
        *self.unhashed_area_mut() = a;

        Ok(())
    }
}

/// Verification-related functionality.
///
/// <a id="verification-functions"></a>
impl Signature {
    /// Verifies the signature against `hash`.
    ///
    /// The `hash` should only be computed over the payload, this
    /// function hashes in the signature itself before verifying it.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature and checks that the key predates the
    /// signature.  Further constraints on the signature, like
    /// creation and expiration time, or signature revocations must be
    /// checked by the caller.
    ///
    /// Likewise, this function does not check whether `key` can make
    /// valid signatures; it is up to the caller to make sure the key
    /// is not revoked, not expired, has a valid self-signature, has a
    /// subkey binding signature (if appropriate), has the signing
    /// capability, etc.
    pub fn verify_hash<P, R>(&mut self, key: &Key<P, R>,
                             mut hash: Box<dyn hash::Digest>)
        -> Result<()>
        where P: key::KeyParts,
              R: key::KeyRole,
    {
        self.hash(&mut hash);
        let mut digest = vec![0u8; hash.digest_size()];
        hash.digest(&mut digest)?;
        self.verify_digest(key, digest)
    }

    /// Verifies the signature against `digest`.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature and checks that the key predates the
    /// signature.  Further constraints on the signature, like
    /// creation and expiration time, or signature revocations must be
    /// checked by the caller.
    ///
    /// Likewise, this function does not check whether `key` can make
    /// valid signatures; it is up to the caller to make sure the key
    /// is not revoked, not expired, has a valid self-signature, has a
    /// subkey binding signature (if appropriate), has the signing
    /// capability, etc.
    pub fn verify_digest<P, R, D>(&mut self, key: &Key<P, R>, digest: D)
        -> Result<()>
        where P: key::KeyParts,
              R: key::KeyRole,
              D: AsRef<[u8]>,
    {
        if let Some(creation_time) = self.signature_creation_time() {
            if creation_time < key.creation_time() {
                return Err(Error::BadSignature(
                    format!("Signature (created {:?}) predates key ({:?})",
                            creation_time, key.creation_time())).into());
            }
        } else {
            return Err(Error::BadSignature(
                "Signature has no creation time subpacket".into()).into());
        }

        let result = key.verify(self.mpis(), self.hash_algo(), digest.as_ref());
        if result.is_ok() {
            // Mark information in this signature as authenticated.

            // The hashed subpackets are authenticated by the
            // signature.
            self.hashed_area_mut().iter_mut().for_each(|p| {
                p.set_authenticated(true);
            });

            // The self-authenticating unhashed subpackets are
            // authenticated by the key's identity.
            self.unhashed_area_mut().iter_mut().for_each(|p| {
                let authenticated = match p.value() {
                    SubpacketValue::Issuer(id) =>
                        id == &key.keyid(),
                    SubpacketValue::IssuerFingerprint(fp) =>
                        fp == &key.fingerprint(),
                    _ => false,
                };
                p.set_authenticated(authenticated);
            });

            // Compute and record any issuer information not yet
            // contained in the signature.
            let issuers = self.get_issuers();
            let id = KeyHandle::from(key.keyid());
            if ! (issuers.contains(&id)
                  || self.additional_issuers.contains(&id)) {
                self.additional_issuers.push(id);
            }

            let fp = KeyHandle::from(key.fingerprint());
            if ! (issuers.contains(&fp)
                  || self.additional_issuers.contains(&fp)) {
                self.additional_issuers.push(fp);
            }
        }
        result
    }

    /// Verifies the signature over text or binary documents using
    /// `key`.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `key` can make
    /// valid signatures; it is up to the caller to make sure the key
    /// is not revoked, not expired, has a valid self-signature, has a
    /// subkey binding signature (if appropriate), has the signing
    /// capability, etc.
    pub fn verify<P, R>(&mut self, key: &Key<P, R>) -> Result<()>
        where P: key::KeyParts,
              R: key::KeyRole,
    {
        if !(self.typ() == SignatureType::Binary
             || self.typ() == SignatureType::Text) {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        if let Some(hash) = self.computed_digest.take() {
            let result = self.verify_digest(key, &hash);
            self.computed_digest = Some(hash);
            result
        } else {
            Err(Error::BadSignature("Hash not computed.".to_string()).into())
        }
    }

    /// Verifies the standalone signature using `key`.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `key` can make
    /// valid signatures; it is up to the caller to make sure the key
    /// is not revoked, not expired, has a valid self-signature, has a
    /// subkey binding signature (if appropriate), has the signing
    /// capability, etc.
    pub fn verify_standalone<P, R>(&mut self, key: &Key<P, R>) -> Result<()>
        where P: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::Standalone {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        // Standalone signatures are like binary-signatures over the
        // zero-sized string.
        let mut hash = self.hash_algo().context()?;
        self.hash_standalone(&mut hash);
        self.verify_digest(key, &hash.into_digest()?[..])
    }

    /// Verifies the timestamp signature using `key`.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `key` can make
    /// valid signatures; it is up to the caller to make sure the key
    /// is not revoked, not expired, has a valid self-signature, has a
    /// subkey binding signature (if appropriate), has the signing
    /// capability, etc.
    pub fn verify_timestamp<P, R>(&mut self, key: &Key<P, R>) -> Result<()>
        where P: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::Timestamp {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        // Timestamp signatures are like binary-signatures over the
        // zero-sized string.
        let mut hash = self.hash_algo().context()?;
        self.hash_timestamp(&mut hash);
        self.verify_digest(key, &hash.into_digest()?[..])
    }

    /// Verifies the direct key signature.
    ///
    /// `self` is the direct key signature, `signer` is the
    /// key that allegedly made the signature, and `pk` is the primary
    /// key.
    ///
    /// For a self-signature, `signer` and `pk` will be the same.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_direct_key<P, Q, R>(&mut self,
                                      signer: &Key<P, R>,
                                      pk: &Key<Q, key::PrimaryRole>)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::DirectKey {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_direct_key(&mut hash, pk);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies the primary key revocation certificate.
    ///
    /// `self` is the primary key revocation certificate, `signer` is
    /// the key that allegedly made the signature, and `pk` is the
    /// primary key,
    ///
    /// For a self-signature, `signer` and `pk` will be the same.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_primary_key_revocation<P, Q, R>(&mut self,
                                                  signer: &Key<P, R>,
                                                  pk: &Key<Q, key::PrimaryRole>)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::KeyRevocation {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_direct_key(&mut hash, pk);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies the subkey binding.
    ///
    /// `self` is the subkey key binding signature, `signer` is the
    /// key that allegedly made the signature, `pk` is the primary
    /// key, and `subkey` is the subkey.
    ///
    /// For a self-signature, `signer` and `pk` will be the same.
    ///
    /// If the signature indicates that this is a `Signing` capable
    /// subkey, then the back signature is also verified.  If it is
    /// missing or can't be verified, then this function returns
    /// false.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_subkey_binding<P, Q, R, S>(
        &mut self,
        signer: &Key<P, R>,
        pk: &Key<Q, key::PrimaryRole>,
        subkey: &Key<S, key::SubordinateRole>)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
              S: key::KeyParts,
    {
        if self.typ() != SignatureType::SubkeyBinding {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_subkey_binding(&mut hash, pk, subkey);
        self.verify_digest(signer, &hash.into_digest()?[..])?;

        // The signature is good, but we may still need to verify the
        // back sig.
        if self.key_flags().map(|kf| kf.for_signing()).unwrap_or(false) {
            let mut last_result = Err(Error::BadSignature(
                "Primary key binding signature missing".into()).into());

            for backsig in self.subpackets_mut(SubpacketTag::EmbeddedSignature)
            {
                let result =
                    if let SubpacketValue::EmbeddedSignature(sig) =
                        backsig.value_mut()
                {
                    sig.verify_primary_key_binding(pk, subkey)
                } else {
                    unreachable!("subpackets_mut(EmbeddedSignature) returns \
                                  EmbeddedSignatures");
                };
                if result.is_ok() {
                    // Mark the subpacket as authenticated by the
                    // embedded signature.
                    backsig.set_authenticated(true);
                    return result;
                }
                last_result = result;
            }
            last_result
        } else {
            // No backsig required.
            Ok(())
        }
    }

    /// Verifies the primary key binding.
    ///
    /// `self` is the primary key binding signature, `pk` is the
    /// primary key, and `subkey` is the subkey.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `subkey` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_primary_key_binding<P, Q>(
        &mut self,
        pk: &Key<P, key::PrimaryRole>,
        subkey: &Key<Q, key::SubordinateRole>)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
    {
        if self.typ() != SignatureType::PrimaryKeyBinding {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_primary_key_binding(&mut hash, pk, subkey);
        self.verify_digest(subkey, &hash.into_digest()?[..])
    }

    /// Verifies the subkey revocation.
    ///
    /// `self` is the subkey key revocation certificate, `signer` is
    /// the key that allegedly made the signature, `pk` is the primary
    /// key, and `subkey` is the subkey.
    ///
    /// For a self-revocation, `signer` and `pk` will be the same.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_subkey_revocation<P, Q, R, S>(
        &mut self,
        signer: &Key<P, R>,
        pk: &Key<Q, key::PrimaryRole>,
        subkey: &Key<S, key::SubordinateRole>)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
              S: key::KeyParts,
    {
        if self.typ() != SignatureType::SubkeyRevocation {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_subkey_binding(&mut hash, pk, subkey);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies the user id binding.
    ///
    /// `self` is the user id binding signature, `signer` is the key
    /// that allegedly made the signature, `pk` is the primary key,
    /// and `userid` is the user id.
    ///
    /// For a self-signature, `signer` and `pk` will be the same.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_userid_binding<P, Q, R>(&mut self,
                                          signer: &Key<P, R>,
                                          pk: &Key<Q, key::PrimaryRole>,
                                          userid: &UserID)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if !(self.typ() == SignatureType::GenericCertification
             || self.typ() == SignatureType::PersonaCertification
             || self.typ() == SignatureType::CasualCertification
             || self.typ() == SignatureType::PositiveCertification) {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_userid_binding(&mut hash, pk, userid);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies the user id revocation certificate.
    ///
    /// `self` is the revocation certificate, `signer` is the key
    /// that allegedly made the signature, `pk` is the primary key,
    /// and `userid` is the user id.
    ///
    /// For a self-signature, `signer` and `pk` will be the same.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_userid_revocation<P, Q, R>(&mut self,
                                             signer: &Key<P, R>,
                                             pk: &Key<Q, key::PrimaryRole>,
                                             userid: &UserID)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::CertificationRevocation {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_userid_binding(&mut hash, pk, userid);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies an attested key signature on a user id.
    ///
    /// This feature is [experimental](crate#experimental-features).
    ///
    /// Allows the certificate owner to attest to third party
    /// certifications. See [Section 5.2.3.30 of RFC 4880bis] for
    /// details.
    ///
    /// `self` is the attested key signature, `signer` is the key that
    /// allegedly made the signature, `pk` is the primary key, and
    /// `userid` is the user id.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    ///
    ///   [Section 5.2.3.30 of RFC 4880bis]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-10.html#section-5.2.3.30
    pub fn verify_userid_attestation<P, Q, R>(
        &mut self,
        signer: &Key<P, R>,
        pk: &Key<Q, key::PrimaryRole>,
        userid: &UserID)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::AttestationKey {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;

        if self.attested_certifications()?
            .any(|d| d.len() != hash.digest_size())
        {
            return Err(Error::BadSignature(
                "Wrong number of bytes in certification subpacket".into())
                       .into());
        }

        self.hash_userid_binding(&mut hash, pk, userid);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies the user attribute binding.
    ///
    /// `self` is the user attribute binding signature, `signer` is
    /// the key that allegedly made the signature, `pk` is the primary
    /// key, and `ua` is the user attribute.
    ///
    /// For a self-signature, `signer` and `pk` will be the same.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_user_attribute_binding<P, Q, R>(&mut self,
                                                  signer: &Key<P, R>,
                                                  pk: &Key<Q, key::PrimaryRole>,
                                                  ua: &UserAttribute)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if !(self.typ() == SignatureType::GenericCertification
             || self.typ() == SignatureType::PersonaCertification
             || self.typ() == SignatureType::CasualCertification
             || self.typ() == SignatureType::PositiveCertification) {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_user_attribute_binding(&mut hash, pk, ua);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies the user attribute revocation certificate.
    ///
    /// `self` is the user attribute binding signature, `signer` is
    /// the key that allegedly made the signature, `pk` is the primary
    /// key, and `ua` is the user attribute.
    ///
    /// For a self-signature, `signer` and `pk` will be the same.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_user_attribute_revocation<P, Q, R>(
        &mut self,
        signer: &Key<P, R>,
        pk: &Key<Q, key::PrimaryRole>,
        ua: &UserAttribute)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::CertificationRevocation {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;
        self.hash_user_attribute_binding(&mut hash, pk, ua);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies an attested key signature on a user attribute.
    ///
    /// This feature is [experimental](crate#experimental-features).
    ///
    /// Allows the certificate owner to attest to third party
    /// certifications. See [Section 5.2.3.30 of RFC 4880bis] for
    /// details.
    ///
    /// `self` is the attested key signature, `signer` is the key that
    /// allegedly made the signature, `pk` is the primary key, and
    /// `ua` is the user attribute.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    ///
    ///   [Section 5.2.3.30 of RFC 4880bis]: https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-10.html#section-5.2.3.30
    pub fn verify_user_attribute_attestation<P, Q, R>(
        &mut self,
        signer: &Key<P, R>,
        pk: &Key<Q, key::PrimaryRole>,
        ua: &UserAttribute)
        -> Result<()>
        where P: key::KeyParts,
              Q: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::AttestationKey {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        let mut hash = self.hash_algo().context()?;

        if self.attested_certifications()?
            .any(|d| d.len() != hash.digest_size())
        {
            return Err(Error::BadSignature(
                "Wrong number of bytes in certification subpacket".into())
                       .into());
        }

        self.hash_user_attribute_binding(&mut hash, pk, ua);
        self.verify_digest(signer, &hash.into_digest()?[..])
    }

    /// Verifies a signature of a message.
    ///
    /// `self` is the message signature, `signer` is
    /// the key that allegedly made the signature and `msg` is the message.
    ///
    /// This function is for short messages, if you want to verify larger files
    /// use `Verifier`.
    ///
    /// Note: Due to limited context, this only verifies the
    /// cryptographic signature, checks the signature's type, and
    /// checks that the key predates the signature.  Further
    /// constraints on the signature, like creation and expiration
    /// time, or signature revocations must be checked by the caller.
    ///
    /// Likewise, this function does not check whether `signer` can
    /// make valid signatures; it is up to the caller to make sure the
    /// key is not revoked, not expired, has a valid self-signature,
    /// has a subkey binding signature (if appropriate), has the
    /// signing capability, etc.
    pub fn verify_message<M, P, R>(&mut self, signer: &Key<P, R>,
                                   msg: M)
        -> Result<()>
        where M: AsRef<[u8]>,
              P: key::KeyParts,
              R: key::KeyRole,
    {
        if self.typ() != SignatureType::Binary &&
            self.typ() != SignatureType::Text {
            return Err(Error::UnsupportedSignatureType(self.typ()).into());
        }

        // Compute the digest.
        let mut hash = self.hash_algo().context()?;
        let mut digest = vec![0u8; hash.digest_size()];

        hash.update(msg.as_ref());
        self.hash(&mut hash);
        hash.digest(&mut digest)?;

        self.verify_digest(signer, &digest[..])
    }
}

impl From<Signature3> for Packet {
    fn from(s: Signature3) -> Self {
        Packet::Signature(s.into())
    }
}

impl From<Signature3> for super::Signature {
    fn from(s: Signature3) -> Self {
        super::Signature::V3(s)
    }
}

impl From<Signature4> for Packet {
    fn from(s: Signature4) -> Self {
        Packet::Signature(s.into())
    }
}

impl From<Signature4> for super::Signature {
    fn from(s: Signature4) -> Self {
        super::Signature::V4(s)
    }
}

#[cfg(test)]
impl ArbitraryBounded for super::Signature {
    fn arbitrary_bounded(g: &mut Gen, depth: usize) -> Self {
        if bool::arbitrary(g) {
            Signature3::arbitrary_bounded(g, depth).into()
        } else {
            Signature4::arbitrary_bounded(g, depth).into()
        }
    }
}

#[cfg(test)]
impl_arbitrary_with_bound!(super::Signature);

#[cfg(test)]
impl ArbitraryBounded for Signature4 {
    fn arbitrary_bounded(g: &mut Gen, depth: usize) -> Self {
        use mpi::MPI;
        use PublicKeyAlgorithm::*;

        let fields = SignatureFields::arbitrary_bounded(g, depth);
        #[allow(deprecated)]
        let mpis = match fields.pk_algo() {
            RSAEncryptSign | RSASign => mpi::Signature::RSA  {
                s: MPI::arbitrary(g),
            },

            DSA => mpi::Signature::DSA {
                r: MPI::arbitrary(g),
                s: MPI::arbitrary(g),
            },

            EdDSA => mpi::Signature::EdDSA  {
                r: MPI::arbitrary(g),
                s: MPI::arbitrary(g),
            },

            ECDSA => mpi::Signature::ECDSA  {
                r: MPI::arbitrary(g),
                s: MPI::arbitrary(g),
            },

            _ => unreachable!(),
        };

        Signature4 {
            common: Arbitrary::arbitrary(g),
            fields,
            digest_prefix: [Arbitrary::arbitrary(g),
                            Arbitrary::arbitrary(g)],
            mpis,
            computed_digest: None,
            level: 0,
            additional_issuers: Vec::with_capacity(0),
        }
    }
}

#[cfg(test)]
impl_arbitrary_with_bound!(Signature4);

#[cfg(test)]
impl ArbitraryBounded for Signature3 {
    fn arbitrary_bounded(g: &mut Gen, _depth: usize) -> Self {
        use mpi::MPI;
        use PublicKeyAlgorithm::*;

        let pk_algo = PublicKeyAlgorithm::arbitrary_for_signing(g);

        #[allow(deprecated)]
        let mpis = match pk_algo {
            RSAEncryptSign | RSASign => mpi::Signature::RSA  {
                s: MPI::arbitrary(g),
            },

            DSA => mpi::Signature::DSA {
                r: MPI::arbitrary(g),
                s: MPI::arbitrary(g),
            },

            EdDSA => mpi::Signature::EdDSA  {
                r: MPI::arbitrary(g),
                s: MPI::arbitrary(g),
            },

            ECDSA => mpi::Signature::ECDSA  {
                r: MPI::arbitrary(g),
                s: MPI::arbitrary(g),
            },

            _ => unreachable!(),
        };

        Signature3::new(
            SignatureType::arbitrary(g),
            Timestamp::arbitrary(g),
            KeyID::arbitrary(g),
            pk_algo,
            HashAlgorithm::arbitrary(g),
            [Arbitrary::arbitrary(g), Arbitrary::arbitrary(g)],
            mpis)
    }
}

#[cfg(test)]
impl_arbitrary_with_bound!(Signature3);

#[cfg(test)]
mod test {
    use super::*;
    use crate::KeyID;
    use crate::cert::prelude::*;
    use crate::crypto;
    use crate::parse::{Parse, PacketParserBuilder};
    use crate::packet::Key;
    use crate::packet::key::Key4;
    use crate::types::Curve;
    use crate::policy::StandardPolicy as P;

    #[cfg(feature = "compression-deflate")]
    #[test]
    fn signature_verification_test() {
        use super::*;

        use crate::Cert;
        use crate::parse::{PacketParserResult, PacketParser};

        struct Test<'a> {
            key: &'a str,
            data: &'a str,
            good: usize,
        }

        let tests = [
            Test {
                key: "neal.pgp",
                data: "signed-1.gpg",
                good: 1,
            },
            Test {
                key: "neal.pgp",
                data: "signed-1-sha1-neal.gpg",
                good: 1,
            },
            Test {
                key: "testy.pgp",
                data: "signed-1-sha256-testy.gpg",
                good: 1,
            },
            Test {
                key: "dennis-simon-anton.pgp",
                data: "signed-1-dsa.pgp",
                good: 1,
            },
            Test {
                key: "erika-corinna-daniela-simone-antonia-nistp256.pgp",
                data: "signed-1-ecdsa-nistp256.pgp",
                good: 1,
            },
            Test {
                key: "erika-corinna-daniela-simone-antonia-nistp384.pgp",
                data: "signed-1-ecdsa-nistp384.pgp",
                good: 1,
            },
            Test {
                key: "erika-corinna-daniela-simone-antonia-nistp521.pgp",
                data: "signed-1-ecdsa-nistp521.pgp",
                good: 1,
            },
            Test {
                key: "emmelie-dorothea-dina-samantha-awina-ed25519.pgp",
                data: "signed-1-eddsa-ed25519.pgp",
                good: 1,
            },
            Test {
                key: "emmelie-dorothea-dina-samantha-awina-ed25519.pgp",
                data: "signed-twice-by-ed25519.pgp",
                good: 2,
            },
            Test {
                key: "neal.pgp",
                data: "signed-1-notarized-by-ed25519.pgp",
                good: 1,
            },
            Test {
                key: "emmelie-dorothea-dina-samantha-awina-ed25519.pgp",
                data: "signed-1-notarized-by-ed25519.pgp",
                good: 1,
            },
            // Check with the wrong key.
            Test {
                key: "neal.pgp",
                data: "signed-1-sha256-testy.gpg",
                good: 0,
            },
            Test {
                key: "neal.pgp",
                data: "signed-2-partial-body.gpg",
                good: 1,
            },
        ];

        for test in tests.iter() {
            eprintln!("{}, expect {} good signatures:",
                      test.data, test.good);

            let cert = Cert::from_bytes(crate::tests::key(test.key)).unwrap();

            if ! cert.keys().all(|k| k.pk_algo().is_supported()) {
                eprintln!("Skipping because one algorithm is not supported");
                continue;
            }

            if let Some(curve) = match cert.primary_key().mpis() {
                mpi::PublicKey::EdDSA { curve, .. } => Some(curve),
                mpi::PublicKey::ECDSA { curve, .. } => Some(curve),
                _ => None,
            } {
                if ! curve.is_supported() {
                    eprintln!("Skipping because we don't support {}", curve);
                    continue;
                }
            }

            let mut good = 0;
            let mut ppr = PacketParser::from_bytes(
                crate::tests::message(test.data)).unwrap();
            while let PacketParserResult::Some(mut pp) = ppr {
                if let Packet::Signature(sig) = &mut pp.packet {
                    let result = sig.verify(cert.primary_key().key()).is_ok();
                    eprintln!("  Primary {:?}: {:?}",
                              cert.fingerprint(), result);
                    if result {
                        good += 1;
                    }

                    for sk in cert.subkeys() {
                        let result = sig.verify(sk.key()).is_ok();
                        eprintln!("   Subkey {:?}: {:?}",
                                  sk.key().fingerprint(), result);
                        if result {
                            good += 1;
                        }
                    }
                }

                // Get the next packet.
                ppr = pp.recurse().unwrap().1;
            }

            assert_eq!(good, test.good, "Signature verification failed.");

            // Again, this time with explicit hashing.
            let mut good = 0;
            let mut ppr = PacketParserBuilder::from_bytes(
                crate::tests::message(test.data)).unwrap()
                .automatic_hashing(false)
                .build().unwrap();
            while let PacketParserResult::Some(mut pp) = ppr {
                if let Packet::OnePassSig(_) = &pp.packet {
                    pp.start_hashing().unwrap();
                }

                if let Packet::Signature(sig) = &mut pp.packet {
                    let result = sig.verify(cert.primary_key().key()).is_ok();
                    eprintln!("  Primary {:?}: {:?}",
                              cert.fingerprint(), result);
                    if result {
                        good += 1;
                    }

                    for sk in cert.subkeys() {
                        let result = sig.verify(sk.key()).is_ok();
                        eprintln!("   Subkey {:?}: {:?}",
                                  sk.key().fingerprint(), result);
                        if result {
                            good += 1;
                        }
                    }
                }

                // Get the next packet.
                ppr = pp.recurse().unwrap().1;
            }

            assert_eq!(good, test.good, "Signature verification with \
                                         explicit hashing failed.");
        }
    }

    #[test]
    fn signature_level() {
        use crate::PacketPile;
        let p = PacketPile::from_bytes(
            crate::tests::message("signed-1-notarized-by-ed25519.pgp")).unwrap()
            .into_children().collect::<Vec<Packet>>();

        if let Packet::Signature(ref sig) = &p[3] {
            assert_eq!(sig.level(), 0);
        } else {
            panic!("expected signature")
        }

        if let Packet::Signature(ref sig) = &p[4] {
            assert_eq!(sig.level(), 1);
        } else {
            panic!("expected signature")
        }
    }

    #[test]
    fn sign_verify() {
        let hash_algo = HashAlgorithm::SHA512;
        let mut hash = vec![0; hash_algo.context().unwrap().digest_size()];
        crypto::random(&mut hash);

        for key in &[
            "testy-private.pgp",
            "dennis-simon-anton-private.pgp",
            "erika-corinna-daniela-simone-antonia-nistp256-private.pgp",
            "erika-corinna-daniela-simone-antonia-nistp384-private.pgp",
            "erika-corinna-daniela-simone-antonia-nistp521-private.pgp",
            "emmelie-dorothea-dina-samantha-awina-ed25519-private.pgp",
        ] {
            eprintln!("{}...", key);
            let cert = Cert::from_bytes(crate::tests::key(key)).unwrap();

            if ! cert.primary_key().pk_algo().is_supported() {
                eprintln!("Skipping because we don't support the algo");
                continue;
            }

            if let Some(curve) = match cert.primary_key().mpis() {
                mpi::PublicKey::EdDSA { curve, .. } => Some(curve),
                mpi::PublicKey::ECDSA { curve, .. } => Some(curve),
                _ => None,
            } {
                if ! curve.is_supported() {
                eprintln!("Skipping because we don't support {}", curve);
                    continue;
                }
            }

            let mut pair = cert.primary_key().key().clone()
                .parts_into_secret().unwrap()
                .into_keypair()
                .expect("secret key is encrypted/missing");

            let sig = SignatureBuilder::new(SignatureType::Binary);
            let hash = hash_algo.context().unwrap();

            // Make signature.
            let mut sig = sig.sign_hash(&mut pair, hash).unwrap();

            // Good signature.
            let mut hash = hash_algo.context().unwrap();
            sig.hash(&mut hash);
            let mut digest = vec![0u8; hash.digest_size()];
            hash.digest(&mut digest).unwrap();
            sig.verify_digest(pair.public(), &digest[..]).unwrap();

            // Bad signature.
            digest[0] ^= 0xff;
            sig.verify_digest(pair.public(), &digest[..]).unwrap_err();
        }
    }

    #[test]
    fn sign_message() {
        use crate::types::Curve::*;

        for curve in vec![
            Ed25519,
            NistP256,
            NistP384,
            NistP521,
        ] {
            if ! curve.is_supported() {
                eprintln!("Skipping unsupported {:?}", curve);
                continue;
            }

            let key: Key<key::SecretParts, key::PrimaryRole>
                = Key4::generate_ecc(true, curve).unwrap().into();
            let msg = b"Hello, World";
            let mut pair = key.into_keypair().unwrap();
            let mut sig = SignatureBuilder::new(SignatureType::Binary)
                .sign_message(&mut pair, msg).unwrap();

            sig.verify_message(pair.public(), msg).unwrap();
        }
    }

    #[test]
    fn verify_message() {
        let cert = Cert::from_bytes(crate::tests::key(
                "emmelie-dorothea-dina-samantha-awina-ed25519.pgp")).unwrap();
        let msg = crate::tests::manifesto();
        let p = Packet::from_bytes(
            crate::tests::message("a-cypherpunks-manifesto.txt.ed25519.sig"))
            .unwrap();
        let mut sig = if let Packet::Signature(s) = p {
            s
        } else {
            panic!("Expected a Signature, got: {:?}", p);
        };

        sig.verify_message(cert.primary_key().key(), msg).unwrap();
    }

    #[test]
    fn verify_v3_sig() {
        if ! PublicKeyAlgorithm::DSA.is_supported() {
            return;
        }

        let cert = Cert::from_bytes(crate::tests::key(
                "dennis-simon-anton-private.pgp")).unwrap();
        let msg = crate::tests::manifesto();
        let p = Packet::from_bytes(
            crate::tests::message("a-cypherpunks-manifesto.txt.dennis-simon-anton-v3.sig"))
            .unwrap();
        let mut sig = if let Packet::Signature(s) = p {
            assert_eq!(s.version(), 3);
            s
        } else {
            panic!("Expected a Signature, got: {:?}", p);
        };

        sig.verify_message(cert.primary_key().key(), msg).unwrap();
    }

    #[test]
    fn sign_with_short_ed25519_secret_key() {
        // 20 byte sec key
        let secret_key = [
            0x0,0x0,
            0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,
            0x1,0x2,0x2,0x2,0x2,0x2,0x2,0x2,0x2,0x2,
            0x1,0x2,0x2,0x2,0x2,0x2,0x2,0x2,0x2,0x2
        ];

        let key: key::SecretKey = Key4::import_secret_ed25519(&secret_key, None)
            .unwrap().into();

        let mut pair = key.into_keypair().unwrap();
        let msg = b"Hello, World";
        let mut hash = HashAlgorithm::SHA256.context().unwrap();

        hash.update(&msg[..]);

        SignatureBuilder::new(SignatureType::Text)
            .sign_hash(&mut pair, hash).unwrap();
    }

    #[test]
    fn verify_gpg_3rd_party_cert() {
        use crate::Cert;

        let p = &P::new();

        let test1 = Cert::from_bytes(
            crate::tests::key("test1-certification-key.pgp")).unwrap();
        let cert_key1 = test1.keys().with_policy(p, None)
            .for_certification()
            .next()
            .map(|ka| ka.key())
            .unwrap();
        let test2 = Cert::from_bytes(
            crate::tests::key("test2-signed-by-test1.pgp")).unwrap();
        let uid = test2.userids().with_policy(p, None).next().unwrap();
        let mut cert = uid.certifications().next().unwrap().clone();

        cert.verify_userid_binding(cert_key1,
                                   test2.primary_key().key(),
                                   uid.userid()).unwrap();
    }

    #[test]
    fn normalize() {
        use crate::Fingerprint;
        use crate::packet::signature::subpacket::*;

        let key : key::SecretKey
            = Key4::generate_ecc(true, Curve::Ed25519).unwrap().into();
        let mut pair = key.into_keypair().unwrap();
        let msg = b"Hello, World";
        let mut hash = HashAlgorithm::SHA256.context().unwrap();
        hash.update(&msg[..]);

        let fp = Fingerprint::from_bytes(b"bbbbbbbbbbbbbbbbbbbb");
        let keyid = KeyID::from(&fp);

        // First, make sure any superfluous subpackets are removed,
        // yet the Issuer, IssuerFingerprint and EmbeddedSignature
        // ones are kept.
        let mut builder = SignatureBuilder::new(SignatureType::Text);
        builder.unhashed_area_mut().add(Subpacket::new(
            SubpacketValue::IssuerFingerprint(fp.clone()), false).unwrap())
            .unwrap();
        builder.unhashed_area_mut().add(Subpacket::new(
            SubpacketValue::Issuer(keyid.clone()), false).unwrap())
            .unwrap();
        // This subpacket does not belong there, and should be
        // removed.
        builder.unhashed_area_mut().add(Subpacket::new(
            SubpacketValue::PreferredSymmetricAlgorithms(Vec::new()),
            false).unwrap()).unwrap();

        // Build and add an embedded sig.
        let embedded_sig = SignatureBuilder::new(SignatureType::PrimaryKeyBinding)
            .sign_hash(&mut pair, hash.clone()).unwrap();
        builder.unhashed_area_mut().add(Subpacket::new(
            SubpacketValue::EmbeddedSignature(embedded_sig), false).unwrap())
            .unwrap();
        let sig = builder.sign_hash(&mut pair,
                                    hash.clone()).unwrap().normalize();
        assert_eq!(sig.unhashed_area().iter().count(), 3);
        assert_eq!(*sig.unhashed_area().iter().next().unwrap(),
                   Subpacket::new(SubpacketValue::Issuer(keyid.clone()),
                                  false).unwrap());
        assert_eq!(sig.unhashed_area().iter().nth(1).unwrap().tag(),
                   SubpacketTag::EmbeddedSignature);
        assert_eq!(*sig.unhashed_area().iter().nth(2).unwrap(),
                   Subpacket::new(SubpacketValue::IssuerFingerprint(fp.clone()),
                                  false).unwrap());
    }

    #[test]
    fn standalone_signature_roundtrip() {
        let key : key::SecretKey
            = Key4::generate_ecc(true, Curve::Ed25519).unwrap().into();
        let mut pair = key.into_keypair().unwrap();

        let mut sig = SignatureBuilder::new(SignatureType::Standalone)
            .sign_standalone(&mut pair)
            .unwrap();

        sig.verify_standalone(pair.public()).unwrap();
    }

    #[test]
    fn timestamp_signature() {
        if ! PublicKeyAlgorithm::DSA.is_supported() {
            eprintln!("Skipping test, algorithm is not supported.");
            return;
        }

        let alpha = Cert::from_bytes(crate::tests::file(
            "contrib/gnupg/keys/alpha.pgp")).unwrap();
        let p = Packet::from_bytes(crate::tests::file(
            "contrib/gnupg/timestamp-signature-by-alice.asc")).unwrap();
        if let Packet::Signature(mut sig) = p {
            let mut hash = sig.hash_algo().context().unwrap();
            sig.hash_standalone(&mut hash);
            let digest = hash.into_digest().unwrap();
            eprintln!("{}", crate::fmt::hex::encode(&digest));
            sig.verify_timestamp(alpha.primary_key().key()).unwrap();
        } else {
            panic!("expected a signature packet");
        }
    }

    #[test]
    fn timestamp_signature_roundtrip() {
        let key : key::SecretKey
            = Key4::generate_ecc(true, Curve::Ed25519).unwrap().into();
        let mut pair = key.into_keypair().unwrap();

        let mut sig = SignatureBuilder::new(SignatureType::Timestamp)
            .sign_timestamp(&mut pair)
            .unwrap();

        sig.verify_timestamp(pair.public()).unwrap();
    }

    #[test]
    fn get_issuers_prefers_fingerprints() -> Result<()> {
        use crate::KeyHandle;
        for f in [
            // This has Fingerprint in the hashed, Issuer in the
            // unhashed area.
            "messages/sig.gpg",
            // This has [Issuer, Fingerprint] in the hashed area.
            "contrib/gnupg/timestamp-signature-by-alice.asc",
        ].iter() {
            let p = Packet::from_bytes(crate::tests::file(f))?;
            if let Packet::Signature(sig) = p {
                let issuers = sig.get_issuers();
                assert_match!(KeyHandle::Fingerprint(_) = &issuers[0]);
                assert_match!(KeyHandle::KeyID(_) = &issuers[1]);
            } else {
                panic!("expected a signature packet");
            }
        }
        Ok(())
    }

    /// Checks that binding signatures of newly created certificates
    /// can be conveniently and robustly be overwritten without
    /// fiddling with creation timestamps.
    #[test]
    fn binding_signatures_are_overrideable() -> Result<()> {
        use crate::packet::signature::subpacket::NotationDataFlags;
        let notation_key = "override-test@sequoia-pgp.org";
        let p = &P::new();

        // Create a certificate and try to update the userid's binding
        // signature.
        let (mut alice, _) =
            CertBuilder::general_purpose(None, Some("alice@example.org"))
            .generate()?;
        let mut primary_signer = alice.primary_key().key().clone()
            .parts_into_secret()?.into_keypair()?;
        assert_eq!(alice.userids().len(), 1);
        assert_eq!(alice.userids().next().unwrap().self_signatures().count(), 1);

        const TRIES: u64 = 5;
        assert!(TRIES * 10 < SIG_BACKDATE_BY);
        for i in 0..TRIES {
            assert_eq!(alice.userids().next().unwrap().self_signatures().count(),
                       1 + i as usize);

            // Get the binding signature so that we can modify it.
            let sig = alice.with_policy(p, None)?.userids().next().unwrap()
                .binding_signature().clone();

            let new_sig = match
                SignatureBuilder::from(sig)
                .set_notation(notation_key,
                              i.to_string().as_bytes(),
                              NotationDataFlags::empty().set_human_readable(),
                              false)?
                .sign_userid_binding(&mut primary_signer,
                                     alice.primary_key().component(),
                                     &alice.userids().next().unwrap()) {
                    Ok(v) => v,
                    Err(e) => {
                        eprintln!("Failed to make {} signatures on top of \
                                   the original one.", i);
                        return Err(e); // Not cool.
                    },
                };

            // Merge it and check that the new binding signature is
            // the current one.
            alice = alice.insert_packets(new_sig.clone())?;
            let sig = alice.with_policy(p, None)?.userids().next().unwrap()
                .binding_signature();
            assert_eq!(sig, &new_sig);
        }

        Ok(())
    }

    /// Checks that subpackets are marked as authentic on signature
    /// verification.
    #[test]
    fn subpacket_authentication() -> Result<()> {
        use subpacket::{Subpacket, SubpacketValue};

        // We'll study this certificate, because it contains a
        // signing-capable subkey.
        let mut pp = crate::PacketPile::from_bytes(crate::tests::key(
            "emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
        assert_eq!(pp.children().count(), 5);

        // The signatures have not been verified, hence no subpacket
        // is authenticated.
        if let Some(Packet::Signature(sig)) = pp.path_ref_mut(&[4]) {
            assert!(sig.hashed_area().iter().all(|p| ! p.authenticated()));
            assert!(sig.unhashed_area().iter().all(|p| ! p.authenticated()));

            // Add a bogus issuer subpacket.
            sig.unhashed_area_mut().add(Subpacket::new(
                SubpacketValue::Issuer("AAAA BBBB CCCC DDDD".parse()?),
                false)?)?;
        } else {
            panic!("expected a signature");
        }

        // Break the userid binding signature.
        if let Some(Packet::Signature(sig)) = pp.path_ref_mut(&[2]) {
            assert!(sig.hashed_area().iter().all(|p| ! p.authenticated()));
            assert!(sig.unhashed_area().iter().all(|p| ! p.authenticated()));

            // Add a bogus issuer subpacket to the hashed area
            // breaking the signature.
            sig.hashed_area_mut().add(Subpacket::new(
                SubpacketValue::Issuer("AAAA BBBB CCCC DDDD".parse()?),
                false)?)?;
        } else {
            panic!("expected a signature");
        }

        // Parse into cert verifying the signatures.
        use std::convert::TryFrom;
        let cert = Cert::try_from(pp)?;
        assert_eq!(cert.bad_signatures().count(), 1);
        assert_eq!(cert.keys().subkeys().count(), 1);
        let subkey = cert.keys().subkeys().next().unwrap();
        assert_eq!(subkey.self_signatures().count(), 1);

        // All the authentic information in the self signature has
        // been authenticated by the verification process.
        let sig = &subkey.self_signatures().next().unwrap();
        assert!(sig.hashed_area().iter().all(|p| p.authenticated()));
        // All but our fake issuer information.
        assert!(sig.unhashed_area().iter().all(|p| {
            if let SubpacketValue::Issuer(id) = p.value() {
                if id == &"AAAA BBBB CCCC DDDD".parse().unwrap() {
                    // Our fake id...
                    true
                } else {
                    p.authenticated()
                }
            } else {
                p.authenticated()
            }
        }));
        // Check the subpackets in the embedded signature.
        let sig = sig.embedded_signatures().next().unwrap();
        assert!(sig.hashed_area().iter().all(|p| p.authenticated()));
        assert!(sig.unhashed_area().iter().all(|p| p.authenticated()));

        // No information in the bad signature has been authenticated.
        let sig = cert.bad_signatures().next().unwrap();
        assert!(sig.hashed_area().iter().all(|p| ! p.authenticated()));
        assert!(sig.unhashed_area().iter().all(|p| ! p.authenticated()));
        Ok(())
    }

    /// Checks that signature normalization adds missing issuer
    /// information.
    #[test]
    fn normalization_adds_missing_issuers() -> Result<()> {
        use subpacket::SubpacketTag;

        let mut pp = crate::PacketPile::from_bytes(crate::tests::key(
            "emmelie-dorothea-dina-samantha-awina-ed25519.pgp"))?;
        assert_eq!(pp.children().count(), 5);

        // Remove the issuer subpacket from a binding signature.
        if let Some(Packet::Signature(sig)) = pp.path_ref_mut(&[4]) {
            sig.unhashed_area_mut().remove_all(SubpacketTag::Issuer);
            assert_eq!(sig.get_issuers().len(), 1);
        } else {
            panic!("expected a signature");
        }

        // Verify the subkey binding without parsing into cert.
        let primary_key =
            if let Some(Packet::PublicKey(key)) = pp.path_ref(&[0]) {
                key
            } else {
                panic!("Expected a primary key");
            };
        let subkey =
            if let Some(Packet::PublicSubkey(key)) = pp.path_ref(&[3]) {
                key
            } else {
                panic!("Expected a subkey");
            };
        let mut sig =
            if let Some(Packet::Signature(sig)) = pp.path_ref(&[4]) {
                sig.clone()
            } else {
                panic!("expected a signature");
            };


        // The signature has only an issuer fingerprint.
        assert_eq!(sig.get_issuers().len(), 1);
        assert_eq!(sig.subpackets(SubpacketTag::Issuer).count(), 0);
        // But normalization after verification adds the missing
        // information.
        sig.verify_subkey_binding(primary_key, primary_key, subkey)?;
        let normalized_sig = sig.normalize();
        assert_eq!(normalized_sig.subpackets(SubpacketTag::Issuer).count(), 1);
        Ok(())
    }

    /// Tests signature merging.
    #[test]
    fn merging() -> Result<()> {
        use crate::packet::signature::subpacket::*;

        let key: key::SecretKey
            = Key4::generate_ecc(true, Curve::Ed25519)?.into();
        let mut pair = key.into_keypair()?;
        let msg = b"Hello, World";
        let mut hash = HashAlgorithm::SHA256.context()?;
        hash.update(&msg[..]);

        let fp = pair.public().fingerprint();
        let keyid = KeyID::from(&fp);

        // Make a feeble signature with issuer information in the
        // unhashed area.
        let sig = SignatureBuilder::new(SignatureType::Text)
            .modify_unhashed_area(|mut a| {
                a.add(Subpacket::new(
                    SubpacketValue::IssuerFingerprint(fp.clone()), false)?)?;
                a.add(Subpacket::new(
                    SubpacketValue::Issuer(keyid.clone()), false)?)?;
                Ok(a)
            })?
            .sign_hash(&mut pair, hash.clone())?;

        // Try to displace the issuer information.
        let dummy: crate::KeyID = "AAAA BBBB CCCC DDDD".parse()?;
        let mut malicious = sig.clone();
        malicious.unhashed_area_mut().clear();
        loop {
            let r = malicious.unhashed_area_mut().add(Subpacket::new(
                SubpacketValue::Issuer(dummy.clone()), false)?);
            if r.is_err() {
                break;
            }
        }

        // Merge and check that the issuer information is intact.
        // This works without any issuer being authenticated because
        // of the deduplicating nature of the merge.
        let merged = sig.clone().merge(malicious.clone())?;
        let issuers = merged.get_issuers();
        assert_eq!(issuers.len(), 3);
        assert!(issuers.contains(&KeyHandle::from(&fp)));
        assert!(issuers.contains(&KeyHandle::from(&keyid)));
        assert!(issuers.contains(&KeyHandle::from(&dummy)));

        // Same, but the other way around.
        let merged = malicious.clone().merge(sig.clone())?;
        let issuers = merged.get_issuers();
        assert_eq!(issuers.len(), 3);
        assert!(issuers.contains(&KeyHandle::from(&fp)));
        assert!(issuers.contains(&KeyHandle::from(&keyid)));
        assert!(issuers.contains(&KeyHandle::from(&dummy)));

        // Try to displace the issuer information using garbage
        // packets.
        let mut malicious = sig.clone();
        malicious.unhashed_area_mut().clear();
        let mut i: u64 = 0;
        loop {
            let r = malicious.unhashed_area_mut().add(Subpacket::new(
                SubpacketValue::Unknown {
                    tag: SubpacketTag::Unknown(231),
                    body: i.to_be_bytes().iter().cloned().collect(),
                }, false)?);
            if r.is_err() {
                break;
            }
            i += 1;
        }

        // Merge and check that the issuer information is intact.
        // This works without any issuer being authenticated because
        // the merge prefers plausible packets.
        let merged = sig.clone().merge(malicious.clone())?;
        let issuers = merged.get_issuers();
        assert_eq!(issuers.len(), 2);
        assert!(issuers.contains(&KeyHandle::from(&fp)));
        assert!(issuers.contains(&KeyHandle::from(&keyid)));

        // Same, but the other way around.
        let merged = malicious.clone().merge(sig.clone())?;
        let issuers = merged.get_issuers();
        assert_eq!(issuers.len(), 2);
        assert!(issuers.contains(&KeyHandle::from(&fp)));
        assert!(issuers.contains(&KeyHandle::from(&keyid)));

        // Try to displace the issuer information by using random keyids.
        let mut malicious = sig.clone();
        malicious.unhashed_area_mut().clear();
        let mut i: u64 = 1;
        loop {
            let r = malicious.unhashed_area_mut().add(Subpacket::new(
                SubpacketValue::Issuer(i.into()), false)?);
            if r.is_err() {
                break;
            }
            i += 1;
        }

        // Merge and check that the issuer information is intact.
        // This works because the issuer information is being
        // authenticated by the verification, and the merge process
        // prefers authenticated information.
        let mut verified = sig.clone();
        verified.verify_hash(pair.public(), hash.clone())?;

        let merged = verified.clone().merge(malicious.clone())?;
        let issuers = merged.get_issuers();
        assert!(issuers.contains(&KeyHandle::from(&fp)));
        assert!(issuers.contains(&KeyHandle::from(&keyid)));

        // Same, but the other way around.
        let merged = malicious.clone().merge(verified.clone())?;
        let issuers = merged.get_issuers();
        assert!(issuers.contains(&KeyHandle::from(&fp)));
        assert!(issuers.contains(&KeyHandle::from(&keyid)));

        Ok(())
    }
}