1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
//! A mechanism to specify policy.
//!
//! A major goal of the Sequoia OpenPGP crate is to be policy free.
//! However, many mid-level operations build on low-level primitives.
//! For instance, finding a certificate's primary User ID means
//! examining each of its User IDs and their current self-signature.
//! Some algorithms are considered broken (e.g., MD5) and some are
//! considered weak (e.g. SHA-1).  When dealing with data from an
//! untrusted source, for instance, callers will often prefer to
//! ignore signatures that rely on these algorithms even though [RFC
//! 4880] says that "[i]mplementations MUST implement SHA-1."  When
//! trying to decrypt old archives, however, users probably don't want
//! to ignore keys using MD5, even though [RFC 4880] deprecates MD5.
//!
//! Rather than not provide this mid-level functionality, the `Policy`
//! trait allows callers to specify their prefer policy.  This can be
//! highly customized by providing a custom implementation of the
//! `Policy` trait, or it can be slightly refined by tweaking the
//! `StandardPolicy`'s parameters.
//!
//! When implementing the `Policy` trait, it is *essential* that the
//! functions are [idempotent].  That is, if the same `Policy` is used
//! to determine whether a given `Signature` is valid, it must always
//! return the same value.
//!
//! [RFC 4880]: https://tools.ietf.org/html/rfc4880#section-9.4
//! [pure]: https://en.wikipedia.org/wiki/Pure_function
use std::fmt;
use std::time::{SystemTime, Duration};
use std::u32;

use failure::ResultExt;

use crate::{
    cert::components::ValidKeyAmalgamation,
    packet::key,
    packet::Signature,
    Result,
    types::HashAlgorithm,
    types::SignatureType,
    types::Timestamp,
};

#[macro_use] mod cutofflist;
use cutofflist::{
    CutoffList,
    REJECT,
    ACCEPT,
};

/// A policy for cryptographic operations.
pub trait Policy : fmt::Debug {
    /// Returns an error if the signature violates the policy.
    ///
    /// This function performs the last check before the library
    /// decides that a signature is valid.  That is, after the library
    /// has determined that the signature is well-formed, alive, not
    /// revoked, etc., it calls this function to allow you to
    /// implement any additional policy.  For instance, you may reject
    /// signatures that make use of cryptographically insecure
    /// algorithms like SHA-1.
    ///
    /// Note: Whereas it is generally better to reject suspicious
    /// signatures, one should be more liberal when considering
    /// revocations: if you reject a revocation certificate, it may
    /// inadvertently make something else valid!
    fn signature(&self, _sig: &Signature) -> Result<()> {
        Ok(())
    }

    /// Returns an error if the key violates the policy.
    ///
    /// This function performs one of the last checks before a
    /// `KeyAmalgamation` or a related data structures is turned into
    /// a `ValidKeyAmalgamation`, or similar.
    ///
    /// Internally, the library always does this before using a key.
    /// The sole exception is when creating a key using `CertBuilder`.
    /// In that case, the primary key is not validated before it is
    /// used to create any binding signatures.
    ///
    /// Thus, you can prevent keys that make use of insecure
    /// algoriths, don't have a sufficiently high security margin
    /// (e.g., 1024-bit RSA keys), are on a bad list, etc. from being
    /// used here.
    fn key(&self, _ka: &ValidKeyAmalgamation<key::PublicParts>)
        -> Result<()>
    {
        Ok(())
    }
}

/// The standard policy.
///
/// The standard policy stores when each algorithm in a family of
/// algorithms is no longer considered safe.  Attempts to use an
/// algorithm after its cutoff time should fail.
///
/// When validating a signature, we normally want to know whether the
/// algorithms used are safe *now*.  That is, we don't use the
/// signature's alleged creation time when considering whether an
/// algorithm is safe, because if an algorithm is discovered to be
/// compromised at time X, then an attacker could forge a message
/// after time X with a signature creation time that is prior to X,
/// which would be incorrectly accepted.
///
/// Occasionally, we know that a signature has not been tampered with
/// since some time in the past.  We might know this if the signature
/// was stored on some tamper-proof medium.  In those cases, it is
/// reasonable to use the time that the signature was saved, since an
/// attacker could not have taken advantage of any weaknesses found
/// after that time.
#[derive(Debug, Clone)]
pub struct StandardPolicy {
    // The time.  If None, the current time is used.
    time: Option<Timestamp>,

    // Hash algorithms.
    hash_algos_normal: NormalHashCutoffList,
    hash_algos_revocation: RevocationHashCutoffList,

}

impl Default for StandardPolicy {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a> From<&'a StandardPolicy> for Option<&'a dyn Policy> {
    fn from(p: &'a StandardPolicy) -> Self {
        Some(p as &dyn Policy)
    }
}

a_cutoff_list!(NormalHashCutoffList, HashAlgorithm, 12,
               [
                   REJECT,                 // 0. Not assigned.
                   Some(Timestamp::Y1997), // 1. MD5
                   Some(Timestamp::Y2013), // 2. SHA-1
                   Some(Timestamp::Y2013), // 3. RIPE-MD/160
                   REJECT,                 // 4. Reserved.
                   REJECT,                 // 5. Reserved.
                   REJECT,                 // 6. Reserved.
                   REJECT,                 // 7. Reserved.
                   ACCEPT,                 // 8. SHA256
                   ACCEPT,                 // 9. SHA384
                   ACCEPT,                 // 10. SHA512
                   ACCEPT,                 // 11. SHA224
               ]);
a_cutoff_list!(RevocationHashCutoffList, HashAlgorithm, 12,
               [
                   REJECT,                 // 0. Not assigned.
                   Some(Timestamp::Y2004), // 1. MD5
                   Some(Timestamp::Y2020), // 2. SHA-1
                   Some(Timestamp::Y2020), // 3. RIPE-MD/160
                   REJECT,                 // 4. Reserved.
                   REJECT,                 // 5. Reserved.
                   REJECT,                 // 6. Reserved.
                   REJECT,                 // 7. Reserved.
                   ACCEPT,                 // 8. SHA256
                   ACCEPT,                 // 9. SHA384
                   ACCEPT,                 // 10. SHA512
                   ACCEPT,                 // 11. SHA224
               ]);

// We need to convert a `SystemTime` to a `Timestamp` in
// `StandardPolicy::reject_hash_at`.  Unfortunately, a `SystemTime`
// can represent a larger range of time than a `Timestamp` can.  Since
// the times passed to this function are cutoff points, and we only
// compare them to OpenPGP timestamps, any `SystemTime` that is prior
// to the Unix Epoch is equivalent to the Unix Epoch: it will reject
// all timestamps.  Similarly, any `SystemTime` that is later than the
// latest time representable by a `Timestamp` is equivalent to
// accepting all time stamps, which is equivalent to passing None.
fn system_time_cutoff_to_timestamp(t: SystemTime) -> Option<Timestamp> {
    let t = t
        .duration_since(SystemTime::UNIX_EPOCH)
        // An error can only occur if the SystemTime is less than the
        // reference time (SystemTime::UNIX_EPOCH).  Map that to
        // SystemTime::UNIX_EPOCH, as above.
        .unwrap_or(Duration::new(0, 0));
    let t = t.as_secs();
    if t > u32::MAX as u64 {
        // Map to None, as above.
        None
    } else {
        Some((t as u32).into())
    }
}

impl StandardPolicy {
    /// Instantiates a new `StandardPolicy` with the default parameters.
    pub const fn new() -> Self {
        Self {
            time: None,
            hash_algos_normal: NormalHashCutoffList::Default(),
            hash_algos_revocation: RevocationHashCutoffList::Default(),
        }
    }

    /// Instantiates a new `StandardPolicy` with parameters
    /// appropriate for `time`.
    ///
    /// `time` is a meta-parameter that selects a security profile
    /// that is appropriate for the given point in time.  When
    /// evaluating an object, the reference time should be set to the
    /// time that the object was stored to non-tamperable storage.
    /// Since most applications don't record when they received an
    /// object, they should conservatively use the current time.
    ///
    /// Note that the reference time is a security parameter and is
    /// different from the time that the object was allegedly created.
    /// Consider evaluating a signature whose `Signature Creation
    /// Time` subpacket indicates that it was created in 2007.  Since
    /// the subpacket is under the control of the sender, setting the
    /// reference time according to the subpacket means that the
    /// sender chooses the security profile.  If the sender were an
    /// attacker, she could have forged this to take advantage of
    /// security weaknesses found since 2007.  This is why the
    /// reference time must be set---at the earliest---to the time
    /// that the message was stored to non-tamperable storage.  When
    /// that is not available, the current time should be used.
    pub fn at(time: SystemTime) -> Self {
        let mut p = Self::new();
        p.time = Some(system_time_cutoff_to_timestamp(time)
                          // Map "ACCEPT" to the end of time (None
                          // here means the current time).
                          .unwrap_or(Timestamp::MAX));
        p
    }

    /// Returns the policy's reference time.
    ///
    /// The current time is None.
    ///
    /// See `StandardPolicy::at` for details.
    pub fn time(&self) -> Option<SystemTime> {
        self.time.map(Into::into)
    }

    /// Always considers `h` to be secure.
    pub fn accept_hash(&mut self, h: HashAlgorithm) {
        self.hash_algos_normal.set(h, ACCEPT);
        self.hash_algos_revocation.set(h, ACCEPT);
    }

    /// Always considers `h` to be insecure.
    pub fn reject_hash(&mut self, h: HashAlgorithm) {
        self.hash_algos_normal.set(h, REJECT);
        self.hash_algos_revocation.set(h, REJECT);
    }

    /// Considers `h` to be insecure starting at `normal` for normal
    /// signatures and at `revocation` for revocation certificates.
    ///
    /// For each algorithm, there are two different cutoffs: when the
    /// algorithm is no longer safe for normal use (e.g., binding
    /// signatures, document signatures), and when the algorithm is no
    /// longer safe for revocations.  Normally, an algorithm should be
    /// allowed for use in a revocation longer than it should be
    /// allowed for normal use, because once we consider a revocation
    /// certificate to be invalid, it may cause something else to be
    /// considered valid!
    ///
    /// A cutoff of `None` means that there is no cutoff and the
    /// algorithm has no known vulnerabilities.
    ///
    /// As a rule of thumb, we want to stop accepting a Hash algorithm
    /// for normal signature when there is evidence that it is broken,
    /// and we want to stop accepting it for revocations shortly
    /// before collisions become practical.
    ///
    /// As such, we start rejecting [MD5] in 1997 and completely
    /// reject it starting in 2004:
    ///
    /// >  In 1996, Dobbertin announced a collision of the
    /// >  compression function of MD5 (Dobbertin, 1996). While this
    /// >  was not an attack on the full MD5 hash function, it was
    /// >  close enough for cryptographers to recommend switching to
    /// >  a replacement, such as SHA-1 or RIPEMD-160.
    /// >
    /// >  MD5CRK ended shortly after 17 August 2004, when collisions
    /// >  for the full MD5 were announced by Xiaoyun Wang, Dengguo
    /// >  Feng, Xuejia Lai, and Hongbo Yu. Their analytical attack
    /// >  was reported to take only one hour on an IBM p690 cluster.
    /// >
    /// > (Accessed Feb. 2020.)
    ///
    /// [MD5]: https://en.wikipedia.org/wiki/MD5
    ///
    /// And we start rejecting [SHA-1] in 2013 and completely reject
    /// it in 2020:
    ///
    /// > Since 2005 SHA-1 has not been considered secure against
    /// > well-funded opponents, as of 2010 many organizations have
    /// > recommended its replacement. NIST formally deprecated use
    /// > of SHA-1 in 2011 and disallowed its use for digital
    /// > signatures in 2013. As of 2020, attacks against SHA-1 are
    /// > as practical as against MD5; as such, it is recommended to
    /// > remove SHA-1 from products as soon as possible and use
    /// > instead SHA-256 or SHA-3. Replacing SHA-1 is urgent where
    /// > it's used for signatures.
    /// >
    /// > (Accessed Feb. 2020.)
    ///
    /// [SHA-1]: https://en.wikipedia.org/wiki/SHA-1
    ///
    /// Since RIPE-MD is structured similarly to SHA-1, we
    /// conservatively consider it to be broken as well.
    pub fn reject_hash_at<N, R>(&mut self, h: HashAlgorithm,
                                normal: N, revocation: R)
        where N: Into<Option<SystemTime>>,
              R: Into<Option<SystemTime>>,
    {
        self.hash_algos_normal.set(
            h,
            normal.into().and_then(system_time_cutoff_to_timestamp));
        self.hash_algos_revocation.set(
            h,
            revocation.into().and_then(system_time_cutoff_to_timestamp));
    }

    /// Returns the cutoff times for the specified hash algorithm.
    pub fn hash_cutoffs(&self, h: HashAlgorithm)
        -> (Option<SystemTime>, Option<SystemTime>)
    {
        (self.hash_algos_normal.cutoff(h).map(|t| t.into()),
         self.hash_algos_revocation.cutoff(h).map(|t| t.into()))
    }
}

impl Policy for StandardPolicy {
    fn signature(&self, sig: &Signature) -> Result<()> {
        let time = self.time.unwrap_or_else(Timestamp::now);

        match sig.typ() {
            t @ SignatureType::KeyRevocation
                | t @ SignatureType::SubkeyRevocation
                | t @ SignatureType::CertificationRevocation =>
            {
                self.hash_algos_revocation.check(sig.hash_algo(), time)
                    .context(format!("revocation signature ({})", t))?
            }
            t =>
            {
                self.hash_algos_normal.check(sig.hash_algo(), time)
                    .context(format!("non-revocation signature ({})", t))?
            }
        }

        Ok(())
    }
}

#[cfg(test)]
mod test {
    use std::io::Read;
    use std::time::Duration;

    use super::*;
    use crate::Fingerprint;
    use crate::cert::{Cert, CertBuilder};
    use crate::parse::Parse;
    use crate::policy::StandardPolicy as P;

    #[test]
    fn binding_signature() {
        let p = &P::new();

        // A primary and two subkeys.
        let (cert, _) = CertBuilder::new()
            .add_signing_subkey()
            .add_transport_encryption_subkey()
            .generate().unwrap();

        assert_eq!(cert.keys().with_policy(p, None).count(), 3);

        // Reject all direct key signatures.
        #[derive(Debug)]
        struct NoDirectKeySigs;
        impl Policy for NoDirectKeySigs {
            fn signature(&self, sig: &Signature) -> Result<()> {
                use crate::types::SignatureType::*;

                match sig.typ() {
                    DirectKey => Err(format_err!("direct key!")),
                    _ => Ok(()),
                }
            }
        }

        let p = &NoDirectKeySigs {};
        assert_eq!(cert.keys().with_policy(p, None).count(), 0);

        // Reject all subkey signatures.
        #[derive(Debug)]
        struct NoSubkeySigs;
        impl Policy for NoSubkeySigs {
            fn signature(&self, sig: &Signature) -> Result<()> {
                use crate::types::SignatureType::*;

                match sig.typ() {
                    SubkeyBinding => Err(format_err!("subkey signature!")),
                    _ => Ok(()),
                }
            }
        }

        let p = &NoSubkeySigs {};
        assert_eq!(cert.keys().with_policy(p, None).count(), 1);
    }

    #[test]
    fn revocation() -> Result<()> {
        use crate::cert::UserIDRevocationBuilder;
        use crate::cert::SubkeyRevocationBuilder;
        use crate::types::SignatureType;
        use crate::types::ReasonForRevocation;

        let p = &P::new();

        // A primary and two subkeys.
        let (cert, _) = CertBuilder::new()
            .add_userid("Alice")
            .add_signing_subkey()
            .add_transport_encryption_subkey()
            .generate()?;

        // Make sure we have all keys and all user ids.
        assert_eq!(cert.keys().with_policy(p, None).count(), 3);
        assert_eq!(cert.userids().with_policy(p, None).count(), 1);

        // Reject all user id signatures.
        #[derive(Debug)]
        struct NoPositiveCertifications;
        impl Policy for NoPositiveCertifications {
            fn signature(&self, sig: &Signature) -> Result<()> {
                use crate::types::SignatureType::*;
                match sig.typ() {
                    PositiveCertification =>
                        Err(format_err!("positive certification!")),
                    _ => Ok(()),
                }
            }
        }
        let p = &NoPositiveCertifications {};
        assert_eq!(cert.userids().with_policy(p, None).count(), 0);


        // Revoke it.
        let mut keypair = cert.primary_key().key().clone()
            .mark_parts_secret()?.into_keypair()?;
        let ca = cert.userids().nth(0).unwrap();

        // Generate the revocation for the first and only UserID.
        let revocation =
            UserIDRevocationBuilder::new()
            .set_reason_for_revocation(
                ReasonForRevocation::KeyRetired,
                b"Left example.org.")?
            .build(&mut keypair, &cert, ca.userid(), None)?;
        assert_eq!(revocation.typ(), SignatureType::CertificationRevocation);

        // Now merge the revocation signature into the Cert.
        let cert = cert.merge_packets(vec![revocation.clone().into()])?;

        // Check that it is revoked.
        assert_eq!(cert.userids().with_policy(p, None).revoked(false).count(), 0);

        // Reject all user id signatures.
        #[derive(Debug)]
        struct NoCertificationRevocation;
        impl Policy for NoCertificationRevocation {
            fn signature(&self, sig: &Signature) -> Result<()> {
                use crate::types::SignatureType::*;
                match sig.typ() {
                    CertificationRevocation =>
                        Err(format_err!("certification certification!")),
                    _ => Ok(()),
                }
            }
        }
        let p = &NoCertificationRevocation {};

        // Check that the user id is no longer revoked.
        assert_eq!(cert.userids().with_policy(p, None).revoked(false).count(), 1);


        // Generate the revocation for the first subkey.
        let subkey = cert.keys().subkeys().nth(0).unwrap();
        let revocation =
            SubkeyRevocationBuilder::new()
                .set_reason_for_revocation(
                    ReasonForRevocation::KeyRetired,
                    b"Smells funny.").unwrap()
                .build(&mut keypair, &cert, subkey.key(), None)?;
        assert_eq!(revocation.typ(), SignatureType::SubkeyRevocation);

        // Now merge the revocation signature into the Cert.
        assert_eq!(cert.keys().with_policy(p, None).revoked(false).count(), 3);
        let cert = cert.merge_packets(vec![revocation.clone().into()])?;
        assert_eq!(cert.keys().with_policy(p, None).revoked(false).count(), 2);

        // Reject all subkey revocations.
        #[derive(Debug)]
        struct NoSubkeyRevocation;
        impl Policy for NoSubkeyRevocation {
            fn signature(&self, sig: &Signature) -> Result<()> {
                use crate::types::SignatureType::*;
                match sig.typ() {
                    SubkeyRevocation =>
                        Err(format_err!("subkey revocation!")),
                    _ => Ok(()),
                }
            }
        }
        let p = &NoSubkeyRevocation {};

        // Check that the key is no longer revoked.
        assert_eq!(cert.keys().with_policy(p, None).revoked(false).count(), 3);

        Ok(())
    }


    #[test]
    fn binary_signature() {
        use crate::crypto::SessionKey;
        use crate::types::SymmetricAlgorithm;
        use crate::packet::{PKESK, SKESK};
        use crate::parse::stream::MessageLayer;
        use crate::parse::stream::MessageStructure;
        use crate::parse::stream::Verifier;
        use crate::parse::stream::Decryptor;
        use crate::parse::stream::VerificationHelper;
        use crate::parse::stream::DecryptionHelper;

        #[derive(PartialEq, Debug)]
        struct VHelper {
            good: usize,
            errors: usize,
            keys: Vec<Cert>,
        }

        impl VHelper {
            fn new(keys: Vec<Cert>) -> Self {
                VHelper {
                    good: 0,
                    errors: 0,
                    keys: keys,
                }
            }
        }

        impl VerificationHelper for VHelper {
            fn get_public_keys(&mut self, _ids: &[crate::KeyHandle])
                -> Result<Vec<Cert>>
            {
                Ok(self.keys.clone())
            }

            fn check(&mut self, structure: MessageStructure) -> Result<()>
            {
                use crate::parse::stream::VerificationResult::*;
                for layer in structure.iter() {
                    match layer {
                        MessageLayer::SignatureGroup { ref results } =>
                            for result in results {
                                eprintln!("result: {:?}", result);
                                match result {
                                    GoodChecksum { .. } => self.good += 1,
                                    Error { .. } => self.errors += 1,
                                    _ => (),
                                }
                            }
                        MessageLayer::Compression { .. } => (),
                        _ => unreachable!(),
                    }
                }

                Ok(())
            }
        }

        impl DecryptionHelper for VHelper {
            fn decrypt<D>(&mut self, _: &[PKESK], _: &[SKESK],
                          _: Option<SymmetricAlgorithm>,_: D)
                          -> Result<Option<Fingerprint>>
                where D: FnMut(SymmetricAlgorithm, &SessionKey) -> Result<()>
            {
                unreachable!();
            }
        }

        // Reject all data (binary) signatures.
        #[derive(Debug)]
        struct NoBinarySigantures;
        impl Policy for NoBinarySigantures {
            fn signature(&self, sig: &Signature) -> Result<()> {
                use crate::types::SignatureType::*;
                eprintln!("{:?}", sig.typ());
                match sig.typ() {
                    Binary =>
                        Err(format_err!("binary!")),
                    _ => Ok(()),
                }
            }
        }
        let no_binary_signatures = &NoBinarySigantures {};

        // Reject all subkey signatures.
        #[derive(Debug)]
        struct NoSubkeySigs;
        impl Policy for NoSubkeySigs {
            fn signature(&self, sig: &Signature) -> Result<()> {
                use crate::types::SignatureType::*;

                match sig.typ() {
                    SubkeyBinding => Err(format_err!("subkey signature!")),
                    _ => Ok(()),
                }
            }
        }
        let no_subkey_signatures = &NoSubkeySigs {};

        let standard = &P::new();

        let keys = [
            "neal.pgp",
        ].iter()
            .map(|f| Cert::from_bytes(crate::tests::key(f)).unwrap())
            .collect::<Vec<_>>();
        let data = "messages/signed-1.gpg";

        let reference = crate::tests::manifesto();



        // Test Verifier.

        // Standard policy => ok.
        let h = VHelper::new(keys.clone());
        let mut v =
            match Verifier::from_bytes(standard, crate::tests::file(data), h,
                                       crate::frozen_time()) {
                Ok(v) => v,
                Err(e) => panic!("{}", e),
            };
        assert!(v.message_processed());
        assert_eq!(v.helper_ref().good, 1);
        assert_eq!(v.helper_ref().errors, 0);

        let mut content = Vec::new();
        v.read_to_end(&mut content).unwrap();
        assert_eq!(reference.len(), content.len());
        assert_eq!(reference, &content[..]);


        // Kill the subkey.
        let h = VHelper::new(keys.clone());
        let mut v = match Verifier::from_bytes(no_subkey_signatures,
                                   crate::tests::file(data), h,
                                   crate::frozen_time()) {
            Ok(v) => v,
            Err(e) => panic!("{}", e),
        };
        assert!(v.message_processed());
        assert_eq!(v.helper_ref().good, 0);
        assert_eq!(v.helper_ref().errors, 1);

        let mut content = Vec::new();
        v.read_to_end(&mut content).unwrap();
        assert_eq!(reference.len(), content.len());
        assert_eq!(reference, &content[..]);


        // Kill the data signature.
        let h = VHelper::new(keys.clone());
        let mut v =
            match Verifier::from_bytes(no_binary_signatures,
                                       crate::tests::file(data), h,
                                       crate::frozen_time()) {
                Ok(v) => v,
                Err(e) => panic!("{}", e),
            };
        assert!(v.message_processed());
        assert_eq!(v.helper_ref().good, 0);
        assert_eq!(v.helper_ref().errors, 1);

        let mut content = Vec::new();
        v.read_to_end(&mut content).unwrap();
        assert_eq!(reference.len(), content.len());
        assert_eq!(reference, &content[..]);



        // Test Decryptor.

        // Standard policy.
        let h = VHelper::new(keys.clone());
        let mut v =
            match Decryptor::from_bytes(standard, crate::tests::file(data), h,
                                        crate::frozen_time()) {
                Ok(v) => v,
                Err(e) => panic!("{}", e),
            };
        assert!(v.message_processed());
        assert_eq!(v.helper_ref().good, 1);
        assert_eq!(v.helper_ref().errors, 0);

        let mut content = Vec::new();
        v.read_to_end(&mut content).unwrap();
        assert_eq!(reference.len(), content.len());
        assert_eq!(reference, &content[..]);


        // Kill the subkey.
        let h = VHelper::new(keys.clone());
        let mut v = match Decryptor::from_bytes(no_subkey_signatures,
                                                crate::tests::file(data), h,
                                                crate::frozen_time()) {
            Ok(v) => v,
            Err(e) => panic!("{}", e),
        };
        assert!(v.message_processed());
        assert_eq!(v.helper_ref().good, 0);
        assert_eq!(v.helper_ref().errors, 1);

        let mut content = Vec::new();
        v.read_to_end(&mut content).unwrap();
        assert_eq!(reference.len(), content.len());
        assert_eq!(reference, &content[..]);


        // Kill the data signature.
        let h = VHelper::new(keys.clone());
        let mut v =
            match Decryptor::from_bytes(no_binary_signatures,
                                        crate::tests::file(data), h,
                                        crate::frozen_time()) {
                Ok(v) => v,
                Err(e) => panic!("{}", e),
            };
        assert!(v.message_processed());
        assert_eq!(v.helper_ref().good, 0);
        assert_eq!(v.helper_ref().errors, 1);

        let mut content = Vec::new();
        v.read_to_end(&mut content).unwrap();
        assert_eq!(reference.len(), content.len());
        assert_eq!(reference, &content[..]);
    }

    #[test]
    fn hash_algo() -> Result<()> {
        use crate::RevocationStatus;
        use crate::types::ReasonForRevocation;

        const SECS_IN_YEAR : u64 = 365 * 24 * 60 * 60;

        // A `const fn` is only guaranteed to be evaluated at compile
        // time if the result is assigned to a `const` variable.  Make
        // sure that works.
        const DEFAULT : StandardPolicy = StandardPolicy::new();

        let (cert, _) = CertBuilder::new()
            .add_userid("Alice")
            .generate()?;

        let algo = cert.primary_key().bundle()
            .binding_signature(&DEFAULT, None).unwrap().hash_algo();

        eprintln!("{:?}", algo);

        // Create a revoked version.
        let mut keypair = cert.primary_key().key().clone()
            .mark_parts_secret()?.into_keypair()?;
        let cert_revoked = cert.clone().revoke_in_place(
            &mut keypair,
            ReasonForRevocation::KeyCompromised,
            b"It was the maid :/")?;

        match cert_revoked.revoked(&DEFAULT, None) {
            RevocationStatus::Revoked(sigs) => {
                assert_eq!(sigs.len(), 1);
                assert_eq!(sigs[0].hash_algo(), algo);
            }
            _ => panic!("not revoked"),
        }


        // Reject the hash algorithm unconditionally.
        let mut reject : StandardPolicy = StandardPolicy::new();
        reject.reject_hash(algo);
        assert!(cert.primary_key().bundle()
                    .binding_signature(&reject, None).is_none());
        assert_match!(RevocationStatus::NotAsFarAsWeKnow
                      = cert_revoked.revoked(&reject, None));

        // Reject the hash algorith next year.
        let mut reject : StandardPolicy = StandardPolicy::new();
        reject.reject_hash_at(
            algo,
            SystemTime::now() + Duration::from_secs(SECS_IN_YEAR),
            SystemTime::now() + Duration::from_secs(SECS_IN_YEAR));
        assert!(cert.primary_key().bundle()
                    .binding_signature(&reject, None).is_some());
        assert_match!(RevocationStatus::Revoked(_)
                      = cert_revoked.revoked(&reject, None));

        // Reject the hash algorith last year.
        let mut reject : StandardPolicy = StandardPolicy::new();
        reject.reject_hash_at(
            algo,
            SystemTime::now() - Duration::from_secs(SECS_IN_YEAR),
            SystemTime::now() - Duration::from_secs(SECS_IN_YEAR));
        assert!(cert.primary_key().bundle()
                    .binding_signature(&reject, None).is_none());
        assert_match!(RevocationStatus::NotAsFarAsWeKnow
                      = cert_revoked.revoked(&reject, None));

        // Reject the hash algorithm for normal signatures last year,
        // and revocations next year.
        let mut reject : StandardPolicy = StandardPolicy::new();
        reject.reject_hash_at(
            algo,
            SystemTime::now() - Duration::from_secs(SECS_IN_YEAR),
            SystemTime::now() + Duration::from_secs(SECS_IN_YEAR));
        assert!(cert.primary_key().bundle()
                    .binding_signature(&reject, None).is_none());
        assert_match!(RevocationStatus::Revoked(_)
                      = cert_revoked.revoked(&reject, None));

        // Accept algo, but reject the algos with id - 1 and id + 1.
        let mut reject : StandardPolicy = StandardPolicy::new();
        let algo_u8 : u8 = algo.into();
        assert!(algo_u8 != 0u8);
        reject.reject_hash_at(
            (algo_u8 - 1).into(),
            SystemTime::now() - Duration::from_secs(SECS_IN_YEAR),
            SystemTime::now() - Duration::from_secs(SECS_IN_YEAR));
        reject.reject_hash_at(
            (algo_u8 + 1).into(),
            SystemTime::now() - Duration::from_secs(SECS_IN_YEAR),
            SystemTime::now() - Duration::from_secs(SECS_IN_YEAR));
        assert!(cert.primary_key().bundle()
                    .binding_signature(&reject, None).is_some());
        assert_match!(RevocationStatus::Revoked(_)
                      = cert_revoked.revoked(&reject, None));

        // Reject the hash algorithm since before the Unix epoch.
        // Since the earliest representable time using a Timestamp is
        // the Unix epoch, this is equivalent to rejecting everything.
        let mut reject : StandardPolicy = StandardPolicy::new();
        reject.reject_hash_at(
            algo,
            SystemTime::UNIX_EPOCH - Duration::from_secs(SECS_IN_YEAR),
            SystemTime::UNIX_EPOCH - Duration::from_secs(SECS_IN_YEAR));
        assert!(cert.primary_key().bundle()
                    .binding_signature(&reject, None).is_none());
        assert_match!(RevocationStatus::NotAsFarAsWeKnow
                      = cert_revoked.revoked(&reject, None));

        // Reject the hash algorithm after the end of time that is
        // representable by a Timestamp (2106).  This should accept
        // everything.
        let mut reject : StandardPolicy = StandardPolicy::new();
        reject.reject_hash_at(
            algo,
            SystemTime::UNIX_EPOCH + Duration::from_secs(500 * SECS_IN_YEAR),
            SystemTime::UNIX_EPOCH + Duration::from_secs(500 * SECS_IN_YEAR));
        assert!(cert.primary_key().bundle()
                    .binding_signature(&reject, None).is_some());
        assert_match!(RevocationStatus::Revoked(_)
                      = cert_revoked.revoked(&reject, None));

        Ok(())
    }

    #[test]
    fn key() -> Result<()> {
        use crate::cert::CipherSuite;
        use crate::types::Curve;

        let p = &P::new();

        #[derive(Debug)]
        struct NoRsa;
        impl Policy for NoRsa {
            fn key(&self, ka: &ValidKeyAmalgamation<key::PublicParts>)
                   -> Result<()>
            {
                use crate::types::PublicKeyAlgorithm::*;

                eprintln!("algo: {}", ka.key().pk_algo());
                if ka.key().pk_algo() == RSAEncryptSign {
                    Err(format_err!("RSA!"))
                } else {
                    Ok(())
                }
            }
        }
        let norsa = &NoRsa {};

        // Generate a certificate with an RSA primary and two RSA
        // subkeys.
        let (cert,_) = CertBuilder::new()
            .set_cipher_suite(CipherSuite::RSA4k)
            .add_signing_subkey()
            .add_signing_subkey()
            .generate()?;
        assert_eq!(cert.keys().with_policy(p, None).count(), 3);
        assert_eq!(cert.keys().with_policy(norsa, None).count(), 0);
        assert!(cert.primary_key().with_policy(p, None).is_ok());
        assert!(cert.primary_key().with_policy(norsa, None).is_err());

        use crate::packet::key::Key4;
        use crate::packet::signature;
        use crate::types::KeyFlags;

        // Generate a certificate with an ECC primary, an ECC subkey,
        // and an RSA subkey.
        let (cert,_) = CertBuilder::new()
            .set_cipher_suite(CipherSuite::Cv25519)
            .add_signing_subkey()
            .generate()?;

        let pk = cert.primary_key().key().mark_parts_secret_ref()?;
        let subkey: key::SecretSubkey
            = Key4::generate_rsa(4096)?.into();
        let binding = signature::Builder::new(SignatureType::SubkeyBinding)
            .set_key_flags(&KeyFlags::default().set_transport_encryption(true))?
            .set_issuer_fingerprint(cert.fingerprint())?
            .set_issuer(cert.keyid())?
            .sign_subkey_binding(&mut pk.clone().into_keypair()?,
                                 &pk, &subkey)?;

        let cert = cert.merge_packets(vec![ subkey.into(), binding.into() ])?;

        assert_eq!(cert.keys().with_policy(p, None).count(), 3);
        assert_eq!(cert.keys().with_policy(norsa, None).count(), 2);
        assert!(cert.primary_key().with_policy(p, None).is_ok());
        assert!(cert.primary_key().with_policy(norsa, None).is_ok());

        // Generate a certificate with an RSA primary, an RSA subkey,
        // and an ECC subkey.
        let (cert,_) = CertBuilder::new()
            .set_cipher_suite(CipherSuite::RSA4k)
            .add_signing_subkey()
            .generate()?;

        let pk = cert.primary_key().key().mark_parts_secret_ref()?;
        let subkey: key::SecretSubkey
            = key::Key4::generate_ecc(true, Curve::Ed25519)?.into();
        let binding = signature::Builder::new(SignatureType::SubkeyBinding)
            .set_key_flags(&KeyFlags::default().set_transport_encryption(true))?
            .set_issuer_fingerprint(cert.fingerprint())?
            .set_issuer(cert.keyid())?
            .sign_subkey_binding(&mut pk.clone().into_keypair()?,
                                 &pk, &subkey)?;

        let cert = cert.merge_packets(vec![ subkey.into(), binding.into() ])?;

        assert_eq!(cert.keys().with_policy(p, None).count(), 3);
        assert_eq!(cert.keys().with_policy(norsa, None).count(), 0);
        assert!(cert.primary_key().with_policy(p, None).is_ok());
        assert!(cert.primary_key().with_policy(norsa, None).is_err());

        // Generate a certificate with an ECC primary and two ECC
        // subkeys.
        let (cert,_) = CertBuilder::new()
            .set_cipher_suite(CipherSuite::Cv25519)
            .add_signing_subkey()
            .add_signing_subkey()
            .generate()?;
        assert_eq!(cert.keys().with_policy(p, None).count(), 3);
        assert_eq!(cert.keys().with_policy(norsa, None).count(), 3);
        assert!(cert.primary_key().with_policy(p, None).is_ok());
        assert!(cert.primary_key().with_policy(norsa, None).is_ok());

        Ok(())
    }
}